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tees.  
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tors, especially K-12 classroom teachers in Utah.  All are encouraged to contribute articles and opin-
ions for any section of the journal.  Some of the features are: UCTM Leader Spotlight; Letter from the 
NCTM President; Letter from the UCTM President; Professional Development, Mathematics for Eng-
lish Language Learners; Puzzle Corner; Recommended Readings and Resources; Utah Core State 
Standards and Implementation; College and University Research; and others. 
 Teachers are especially encouraged to submit articles including inspirational stories, exempla-
ry lessons, beginning teacher ideas; or managements tools.  Sample ideas are (but not limited to) fo-
cused on teachers or districts who have successfully implemented the Utah Core, Inquiry based calcu-
lus, and new math programs K-12.  Manuscripts, including tables and figures, should be typed in Mi-
crosoft Word and submitted electronically as an e-mail attachment to Christine Walker 
(Christine.Walker@uvu.edu).  A cover letter containing author’s name, address, affiliations, phone, e-
mail address and the article’s intended audience should be included.  Items include, but are not limited 
to, NCTM affiliated group announcements, advertisements of upcoming professional meetings, and 
member updates. 

EDITOR 

UCTM 2012-2013 BOARD OF DIRECTORS 

 

Utah Mathematics Teacher Fall/Winter 2013 - 2014   73 

 

I was born and raised in Salt Lake City as the 3rd of 5 children. My siblings and I were homeschooled during our elementary 

and junior high years. I then graduated from West High School in 1999. Directly following my high school graduation I attend-

ed Westminster College where I earned a Bachelor of Arts Degree with a major in Elementary Education and minors in Special 

Education and Music. After I taught for a few years I attended the University of 

Utah where I earned a Master of Education Degree in the area of Teaching and 

Learning with a focus on Literacy. My entire teaching career has been at Emerson 

Elementary School in the Salt Lake City School District. I have taught a K-1 Be-

havior Support Class, a First Grade class, and a 2-4 Behavior Support Class; 

which I am currently in and loving. I cannot say enough about the amazing profes-

sionals I am privileged to teach alongside. They are truly topnotch. During the 

2009-2010 school year I took a sabbatical and volunteered for a year at an orphan-

age/boarding school in a small village in Uganda. It was an amazing experience 

that changed my life. Some of my passions, outside of teaching, are my family, 

music and the outdoors. 

I am the proud mother of 3 daughters and 6 grand children. I have been in education for 

19 years teaching both third and fourth grade. I have two master’s degrees, one in Curricu-

lum and Instruction and another in Administration, and an Elementary Math Endorsement. 

I was Alpine School District’s Math Specialist for 7 years. I was responsible for the train-

ing of 1800 teachers. I am an advocate for all children being taught to understand math 

concepts, not just use rote procedures and memorize their math facts. Our students will 

have jobs that require communication skills, problem solving, and flexibility to solve a 

problem a different way if the first way doesn’t work. Math gives us the opportunity to 

teach using these skills. 

Graduating from 

Brigham Young 

University in 

1993, I earned a 

degree in Mathematics Education.  Furthering my education, I completed my masters’ degree at Prairie View A&M Univer-

sity (in Texas) in Curriculum and Instruction with an emphasis in mathematics in 2005.  I have been privileged to teach for 

21 years in Idaho, Texas, and Utah.  Not only do I provide time in the classroom, I look for other opportunities to serve, 

continually helping on district committees.  Within 2 different districts, I have served for the past 12 years on district level 

committees. I am currently on the Alpine School District Steering Committee for mathematics.  In addition, I enjoy teach-

ing professional development courses and trainings both at American Fork High School (AFHS) and at the district level.   I 

have taught courses for the new core, Smartboard use, and TI calculators.  Most recently, I served on the lead team for our 

school’s accreditation visit which included the implementation of a data study, professional development training, writing 

the final report, and organizing materials and supervising the accreditation team’s visit.  

Striving to be an example and lead wherever I can, I have been a Curriculum Team Leader 

and department chair for more than 7 years and currently serve as a mentor teacher to the 

American Fork High School faculty, particularly the Math Department.  This year my 

mentoring role has expanded to being the Lead Curriculum Team Leader at AFHS.  This 

position enables me to work with other Curriculum Team Leaders in my school strength-

ening our school curriculum through a focus on increasing student engagement, higher 

order thinking strategies, and implementing and using formative assessment strategies to 

improve instruction.  My dedication to students and education has been recognized 

through my nomination for the Presidential Award for Excellence in Mathematics and 

Science Teaching.  Last school year, I was selected by Utah’s Presidential Scholar in Sci-

ence as the teacher that most influenced her in high school.   

Muffet Reeves—April Leder 

Karl Jones—Joshua Craner 

George Shell—Melody Apezteguia 

mailto:Christine.walker@uvu.edu
mailto:Christine.Walker@uvu.edu
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Karen Feld 

I graduated from Utah State University in 2005 and started my first job at Pleasant Grove 

Junior High. I love teaching junior high students and find that my days are always an adven-

ture. One year after I started teaching at PGJR, I started teaching developmental mathematics 

classes at UVU. A few years after that I decided to go back to school and get my master's degree, while still 

teaching at PGJR. I received my degree from Western Governor's University in Math Education. I also teach 

teacher development classes for the state of Utah.  

I absolutely love my job. It is always a challenge. Every day I get to work with students who struggle and 

help them find clarity. What a pleasure it is to see the look of understanding on a student's face after strug-

gling with a concept. I truly am blessed to do what I do. 

 

Nathan Auck is a math teacher at Horizonte Instruction and Training Center. 

He earned his Environmental Science degree from The Ohio State University, 

graduating distinguished and with honors. Shortly after university, Nathan 

moved west to Utah to pursue outdoor wilderness adventures and inspire youth. 

His journey has taken him from working with at-risk youth in the wilderness 

(Second Nature Wilderness Program) to private school (Realms of Inquiry Pri-

vate School) to public school (Horizonte). Along the way, Nate has expressed 

his adventurous side by walking 2750 miles from Mexico to Canada on the Pa-

cific Crest Trail, climbing the 3300 foot tall sheer granite cliff of El Capitain 

and traveling to over 30 international countries in search of perspective, insight 

and growth. He has had the honor of winning teacher of the year at Horizonte, 

beginning his National Board Certification and serving a population of students 

who often struggle to find advocates. He currently resides in Salt Lake City, 

where he spends his free time working wood with hand tools, gardening, run-

ning, climbing, skiing, boating and eating local food with his beloved wife, 

Sara. 

Vicki Lyons loves teaching math to her amazing and wonderful students! She has taught high school mathe-

matics, including Algebra I through AP Calculus and Statistics, at Lone Peak High School in Highland, Utah 

ever since the school opened in 1997. Prior to that she taught one year at American Fork High School and three 

years at Ricks Junior College in Idaho. She is National Board Certified and recently she filled a 2-year assign-

ment as a Clinical Faculty Associate teaching at Brigham Young University.  

 

Vicki has designed and facilitated several workshops for the Utah State Office of 

Education including the Common Core Academy for Secondary Mathematics and 

she has spoken at many conferences. In the summer she has the delightful oppor-

tunity to work as a staff member at the Park City Mathematics Institute Secondary 

Schools Teachers Program, as a workshop facilitator for the Committee on Teach-

ers as Professionals (c-Tap), and as a Reader for the AP Statistics exam.  

 

Vicki has a MA and BA in Mathematics Education and a BS magna cum laude in 

mathematics from Brigham Young University. In her extra time, she loves nature 

and being outdoors, and truly enjoys walking to and from school everyday. She is 

also a mother and a grandmother and her happiest times are spent with her family 

that she adores. 

Presidential Award Finalists 
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Problem to Ponder, taken from www.NCTM.org  

President’s Corner 

 
It’s as Easy as Falling Off a Cliff, or Is It? 
In a kingdom long ago, a king decided to let chance determine whether persons who com-
mitted major crimes would be allowed to live and stay in the kingdom or would fall to their 
deaths off a steep cliff. Offenders would be placed blindfolded at the edge of the cliff, and 
then for the rest of their lives, they would proceed to take a step forward, toward the cliff”s 
edge, or a step backward, away from the edge, thus saving themselves—at least for the time 
being. 
A spinner, to be spun by a favorite of the king, would determine whether the offenders 
stepped forward or backward. On the first spin, a step toward the cliff would send the 
blindfolded criminal right over the edge. A step away from the cliff would take the offender 
two steps back from the edge. But then the king’s favorite would get to take another spin, 
randomly determining the offender’s next step. And so on… 
The king, being a “merciful” ruler, wanted the criminal to have a sporting chance of .5 of 
not going over the cliff. So he asked the court mathematician, “How should the spinner be 
divided for stepping toward the cliff and stepping away from the cliff so that an offender 
has a .5 chance of surviving indefinitely?”  
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(This article is reprinted with the permission from the National Council of Teachers of Mathe-

matics.  This article appears in the Discussion Research Brief, 2013) 
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Presidents Message 
 

Travis Lemon, UCTM President 
 

 

 How are you doing? No seriously, how are you doing in your 

classroom? What practices and teaching moves are you focused on 

this year? Are you doing something different than you have done in 

past years? If not, why not? Are you working to promote meaningful 

mathematical practices in your classroom? How are you doing this 

ever increasingly important task? 

 

 With the new core standards containing the eight Mathematical Practice standards it is 

increasingly important for us as mathematics educators to reflect on our teaching practices and 

to think about how they promote Mathematical Practices for students. Does your instruction 

provide opportunities for learning that are deep, enduring and relevant? How do you know? 

 

 My purpose for asking these questions is twofold: first, to promote self-reflection and a 

personal assessment of your professional practice.  Second, to draw attention to the importance 

of teaching for understanding and a greater depth of knowledge. More than ever before we need 

to promote reasoning and sense making. The students we teach are living in a world that moves 

at an ever-increasing faster pace. They need skills and abilities but they also need well-founded 

understandings that promote flexibility in thinking and reasoning. More than ever before our 

students need to know how to think critically, problem-solve and act in accordance to well-

developed plans. 

 

 I call on all teachers of mathematics to reflect on their teaching practices and on their 

personal efforts to increase student learning and determine how improvements might be made 

and then act to make those instructional improvements that will promote greater depth of under-

standing. Do more than listen and observe, act to implement some of the quality instructional 

principles and frameworks that researchers have provided and that NCTM has promoted for 

over two decades. Seek to learn and then to provide meaningful opportunities for your students 

to learn. Engage in professional learning communities, professional organizations and profes-

sional practices that will allow for your instructional techniques to improve and to meet the 

needs of the learners you serve on a daily basis.  

 

Travis Lemon 

President, UCTM 

2012—2013 
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Making Mathematical Connections 

by NCTM President Linda M. Gojak 

NCTM Summing Up, October 3, 2013 
 

 

 One of the most memorable moments I had in teaching mathe-

matics occurred in a fifth-grade class. We began the 

year using rectangular arrays as a model to develop 

the concept of prime and composite numbers. We 

hung student-made posters of the numbers from 1 to 

100 with representations of arrays and lists of factors 

for each number around the room. By the end of that 

unit all my students had mastered multiplication facts 

and could factor with facility as we began our work 

with fractions. The connections among concepts and 

the use of concrete representations certainly led to deeper understand-

ing. Later that year, students worked with a variety of models to find 

area and perimeter of rectangles and extended that experience to find 

the areas of triangles, parallelograms, and trapezoids. Most students 

were able to generalize a formula, albeit not always the most efficient, 

for each polygon. One day, a student commented that this was just like 

what they had studied at the beginning of the year. When I gave a puz-

zled look, the class pointed to the posters still on the wall from our first 

unit of study and said, “You know, that factor and multiple stuff.” I had 

a new appreciation for the power of providing experiences that enable 

students to make connections among mathematical ideas. My students 

remembered and understood the mathematics that we had studied 

months earlier! 

 

 Since that experience I have given much thought to the Process 

Standards in Principles and Standards for School Mathematics, and 

their impact on teaching. With the current focus on progressions and 

trajectories of content standards, the potential of the Connection Stand-

ard (NCTM, 2000) continues to pique my interest. It’s a powerful 

standard: 
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Draw Connections and Summarize the Discussion  

 The first four of the five practices mentioned above (Anticipating, Monitoring, Select-

ing, and Sequencing) work to set up the discussion, whereas Connecting is primarily meant to 

occur during the discussion. Rather than having mathematical discussions that consist of sepa-

rate presentations of different strategies and solutions, the goal is “to have student presentations 

build on one another to develop powerful mathematical ideas” (Smith & Stein, 2011, p. 11). 

The teacher supports students in drawing connections between their solutions and other solu-

tions in the lesson. The discussion should come to an end with some kind of summary of the 

key mathematical ideas. The students ideally leave with “residue” from the lesson, which pro-

vides a way of talking about the under- standings that remain when the activity is over (Hiebert 

et al., 1997). 

Concluding Thoughts 

 In this brief summary, various guidelines and tools were presented to support teachers’ 

efforts to facilitate productive discussions. It is important to recognize that this review only 

scratches the surface of a growing body of work. Several important areas of this research could 

not be included here due to space. Some examples include: the teacher’s role in classroom dis-

course (Walshaw & Anthony, 2008); the role of students (Hiebert et al., 1997); the development 

of mathematical language (see, e.g., Herbel-Eisenmann, 2002; Pimm, 1987); developing lesson 

goals and planning for productive discussions (Smith & Stein, 2011); using discussion as a 

formative assessment tool (Lee, 2006); types of questions (e.g., Boaler & Humphreys, 2005) 

and patterns of questioning (Herbel-Eisenmann & Breyfogle, 2005); equitable participation in 

classroom discussions (Esmonde, 2009); student motivation to participate in discussions 

(Jansen, 2006), and so on. There is still much to learn about the conditions under which discus-

sions are productive toward reaching learning goals in mathematics classrooms. The guidelines 

and tools presented here, however, are intended to provide teachers with a place to begin work-

ing on their own goals of facilitating productive and powerful mathematics discussions. 
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Instructional programs from prekindergarten through grade 12 should 

enable all students to—  

 

 recognize and use connections among mathematical ideas; 

 understand how mathematical ideas interconnect and build on one 

another to produce a coherent whole; 

 recognize and apply mathematics in contexts outside of mathemat-

ics. 

 

 Too often, rather than making sense of mathematical ideas, stu-

dents focus on remembering procedures or tricks. For example, how 

many students learn “flip and multiply” to divide fractions but have no 

idea why it works? Often those who understand why the procedure 

works struggle to apply it in problem situations. The procedure alone 

often leads to misconceptions. Students who work from rote memory 

often invert the wrong fraction, forget to change operations, or even 

apply the rule when multiplying two fractions. The meaning of opera-

tions doesn’t change from whole numbers to fractions. For example, in 

the early grades, the understanding that students develop of division of 

whole numbers often rests on the idea that “9 ÷ 3,” for example, asks 

how many groups of 3 are in 9. As students move to fractions, it is im-

portant to provide them with experiences that connect this whole-

number understanding to similar examples with fractions: “9/16 ÷ 

3/16,” for example, asks how many groups of 3/16 are in 9/16. In this 

way, students gain a deeper understanding rather than depending on a 

memorized procedure and can apply division of fractions to a variety of 

problem-solving situations and real-world applications. 

 

 Many teachers use manipulative materials to introduce a new 

concept. Manipulatives themselves, however, do not ensure under-

standing. We must provide experiences that support students’ efforts to 

make connections between what they are doing with the materials and 

the mathematical ideas that they represent. This takes time and teacher 

expertise. Algebra tiles are not an end to teaching basic algebra con-

cepts—when used appropriately, they provide students with opportuni-

ties to connect their work to the concepts. And it is these connections 

that enable students to make sense of the abstract representations. 
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 Although it is important to think about the connections among 

concepts within the grade level or courses that we teach, it is also im-

portant to reflect on the connections across grade levels. This work in-

volves thoughtful discussions with other colleagues about the way that 

concepts are taught and the potential linkages among those ideas. Many 

of us learned mathematics as isolated pieces of information. Taking a 

mathematical concept and considering how it originates, extends, and 

connects with other concepts across the grades will help teachers to de-

velop a deeper understanding. It is then that we can plan instruction 

that ensures that our students regularly make connections to help them 

make sense of the mathematics they are learning. 
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mathematical goals for the discussion will be achieved by making purposeful choices about the 

order in which students’ work is shared (M. Smith & Stein, 2011). Smith and Stein suggested 

that teachers can also benefit from a set of moves that will help them lead whole-class discus-

sions. Specifically, they focused on a set of “talk moves” that can be used to support students as 

they share their thinking with one another in respectful and academically productive ways. 

Use Teacher Discourse Moves 

 In Classroom Discussions, Chapin, O’Connor, and Anderson (2003, 2009) introduced 

five “productive talk moves,” which they described as suggested actions that were found to be 

effective in “making progress toward achieving [their] instructional goal of supporting mathe-

matical thinking and learning” (p. 11). This claim was based on data from their work in Project 

Challenge, an intervention project initially aimed to provide disadvantaged elementary and mid-

dle school students with a reform-based mathematics curriculum that focused on mathematical 

understanding, with a heavy emphasis on talk and communication about mathematics. A goal of 

using the talk moves was to increase the amount of high-quality, mathematically productive talk 

in classrooms. 

 Building on Chapin et al. (2003), Herbel-Eisenmann, Cirillo, and Steele expanded this 

earlier work through a five-year project aimed at supporting teachers’ facilitation of classroom 

discourse through the design of a professional development curriculum program. The curricu-

lum supports secondary mathematics teachers in becoming more purposeful about engaging stu-

dents in mathematical explanations, argumentation, and justification. A modified set of talk 

moves serves as a centerpiece of the curriculum. This set of Teacher Discourse Moves (TDMs) 

is a tool that can help facilitate productive and powerful classroom discourse. As part of the cur-

riculum’s overarching goals, productive focuses on how discourse practices support students’ 

access to mathematical content. Powerful refers to how classroom discourse supports students’ 

developing identities as knowers and doers of mathematics. There are six TDMs (cf. the five 

talk moves), which are defined in such a way that highlights what is special about thinking and 

reasoning in mathematics class as opposed to any other subject area (Herbel-Eisenmann, Steele, 

& Cirillo, in press). These six moves are: 

 

 Waiting (e.g., Can you put your hands down and give everyone a minute to think?) 

 Inviting Student Participation (e.g., Let’s hear what kinds of conjectures people wrote.) 

 Revoicing (e.g., So what I think I hear you saying is that if there was only one point of in-

tersection, it would have to be at the vertex. Have I got that right?) 

 Asking Students to Revoice (e.g., Okay, can some-one else say in their own words what 

they think Emma just said about the sum of two odd numbers?) 

 Probing a Students’ Thinking (e.g., Can you say more about how you decided that?) 

 Creating Opportunities to Engage with Another’s Reasoning (e.g., So what I’d like you to 

do now is use Nina’s strategy to solve this other problem with a twelve-by-twelve grid.) 

 

 The six TDMs can be particularly productive and powerful when they are purposefully 

used in combination with each other (e.g., Asking Students to Revoice after Probing a Students’ 

Thinking). These moves can be used in conjunction with the Five Practices introduced above. 
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(c) positions the teacher (rather than the students) as arbiters of mathematical truth; (d) mini-

mizes the cognitive engagement on the part of students; (e) communicates to students that there 

is only one solution path; and (f) represents premature closure of mathematical exploration (p. 

103). As an alternative to telling, the authors put forth the strategy of initiating. Initiating in-

cludes but is not limited to the following actions: 

 Summarizing student work in a manner that inserts new information into the conversation 

 Providing information that students need in order to test their ideas or generate a counterex-

ample 

 Asking students what they think of a new strategy or idea (perhaps from a “hypothetical” 

student) 

 Presenting a counterexample 

 Engaging in Socratic questioning in an effort to introduce a new concept 

 Presenting a new representation of the situation (e.g., a graph to accompany a table of val-

ues) 

 These strategies offer alternatives to directly telling students information so that the 

teacher can productively move the discussion forward. Another strategy involves allowing the 

students to share their ideas as the basis of the discussion. Sometimes even incorrect strategies 

are worth exploring. 

Explore Incorrect Solutions 

 Rather than only allowing correct solutions and strategies to surface in discussions, 

many teachers have taken steps to reduce the stigma attached to being wrong, thus communi-

cating to students that mistakes are part of the learning process (Staples & Colonis, 2007). 

Some researchers have found that exploring incorrect solutions can serve as a springboard for 

discussion. This can give a focus to the discussion and engage students in figuring out why an 

idea does or does not make sense (Bochicchio et al., 2009). This move has several benefits, in-

cluding: addressing common misconceptions, refining student thinking, prompting metacogni-

tion, and engaging students in developing hypotheses (Bochicchio et al., 2009). Staples and 

Colonis (2007) found that, in collaborative discussions, it was rare for something to explicitly 

be identified as “wrong.” Rather, students’ ideas were treated as “works in progress,” and the 

focus of the teacher’s guidance was to help the student and the class extend the idea that had 

been presented and continue to develop a viable solution collaboratively. Purposefully selecting 

and sequencing the presentation of student ideas can be an effective way to organize a discus-

sion of both incorrect and correct student solutions. 

Select and Sequence the Ideas to Be Shared in the Discussion 

 One of the primary features of a discussion-based classroom is that, instead of doing vir-

tually all of the talking, modeling, and explaining themselves, teachers must encourage and ex-

pect students to do so. To do this effectively, teachers need to organize students’ participation 

(National Council of Teachers of Mathematics, 1991). After monitoring the work of students as 

they explore the task (described above), teachers can select and sequence the ideas to be shared 

in the discussion (M. Smith & Stein, 2011). Selecting involves deciding which particular stu-

dents will share their work with the rest of the class to get “particular pieces of the mathematics 

on the table” (Lampert, 2001, p. 140). Selecting which solutions will be shared by particular 

students is guided by the mathematical goal for the lesson and by the teacher’s assessment of 

how each contribution will contribute to that goal. Sequencing is deciding on what order the 

selected students should present their work. Teachers can maximize the chances that their  
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Research on Students’ Thinking and Reasoning about 

Averages and Measures of Center 
Elementary Strand 
NCTM, Student Learning Research Brief 
 

The statistical concepts of average, particularly middles or means, are very power-

ful in statistics, since on the one hand measures of center are often used in a descriptive 

role to summarize information about a data set. On the other hand, if a data set is a sample 

that has been appropriately drawn from a parent population, the sample data might be ex-

pected to “mirror” the parent population, and thus the mean of that sample provides some 

information about the (unknown) mean of the entire population from which the sample was 

drawn. Better yet, collections of samples and their means can furnish a “likely range” with-

in which the actual unknown population mean is probably located. Measures of center thus 

can play not only a descriptive role but also an inferential role, since we use information 

from samples to infer information about populations or to make comparisons between pop-

ulations. How do our students actually tend to think about the concept of “average”? 

Mokros and Russell (1995) interviewed students in grades 4, 6, and 8 in “messy da-

ta” situations, using contexts like allowance money and food prices that were familiar to 

students. These students had been taught the procedure for finding the arithmetic average, 

so they had some familiarity with computing means. However, Mokros and Russell asked 

students to work backward from a given mean to some possibilities for the data set that 

could have produced that mean. For example, in one problem students were told that the 

mean cost of a bag of potato chips was $1.35, and then they were asked to construct a col-

lection of ten bags whose prices had a mean of $1.35. In searching for students’ own pre-

ferred strategies while they worked on statistical tasks involving averages, Mokros and 

Russell identified five different conceptions of average among the students they inter-

viewed: average as mode, average as algorithm, average as reasonable, average as mid-

point, and average as point of balance. 

Some of these conceptions of average prove to be impoverished, whereas others can 

lead to students’ developing higher levels of thinking about data. Students who focus pri-

marily on modes in data sets have difficulty working backward from the mean to construct 

a data distribution that has that mean, especially if they are not allowed to use the mean 

value itself as a data value. Mokros and Russell concluded that such modal-thinking stu-

dents don’t see the whole data set as an entity; they can focus only on individual data val-

ues. They also found that students who think of average primarily as an algorithm aren’t 

able to make connections between their computational procedures and the original context 

of the data. Students who think of average as reasonable tend to believe that it is an approx-

imation, not something that one can compute. Even some of the students who had more 

powerful conceptions of average, such as the midpoint or as the point of balance (though 

Mokros and Russell found the latter conception to be rare among their interviewees), had 

difficulty re-creating a set of bags of potato chips with an average price of $1.35 if they 

weren’t allowed to use $1.35 as a data point. One conclusion we can draw from  
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Mokros and Russell’s work is that computational facility with average does not guarantee that 

conceptual understanding or contextual connections about average will follow in our students. 

We have to create opportunities for our students to connect back to the original context and to 

interpret what their computations mean in light of the context.  

 Konold and Pollatsek (2002) and Waton and Moritz (2000a, 2000b) provide us with fur-

ther evidence for the variety of ways that students think about the meaning of measures of center. 

Watson and Moritz’s findings suggest that students think predominantly of “middle” when they 

are asked what average means. For example, when asked what it means for a student to be aver-

age, or what average means in the context of “the average wage earner can afford to buy the av-

erage home,” students most frequently referenced “middles,” and then “most,” with the mean 

being a distant third. Watson and Moritz offered strong evidence with a large sample of students 

that there are developmental trajectories for students’ understanding of the concept of average. 

They suggest that students’ conceptual development of average starts with idiosyncratic stories, 

proceeds to everyday colloquial ideas, then to “mosts” and “middles,” and finally to the mean as 

a representative of a data set. 

 In their work with secondary and postsecondary students, Konold and Pollatsek postulat-

ed four conceptual perspectives for the mean: (1) mean as typical value, (2) mean as fair share, 

(3) mean as a way to reduce data, and (4) mean as a signal amid noise. From a statistical point of 

view they argue that “signal amid noise” is the most important and most useful way to think 

about the mean when comparing two or more data sets. In fact, they recommend that the mean 

should be first introduced to students in the context of comparing two or more data sets. Chil-

dren’s thinking of average as a typical value arises naturally from their experience, as document-

ed by Watson and Moritz and by Mokros and Russell. Thus, “mean as typical” may be a good 

starting point for teachers to connect to students’ own informal knowledge, and “mean as fair 

share” can provide a conceptual platform for connecting to the algorithm for finding the mean. 

For example, “leveling” stacks of cubes of varying heights to make all the stacks of equal height 

(fair shares) allows students to uncover the algorithm for computing the mean as well as to gen-

erate alternative algorithms (Foreman and Bennett 1995). However, for Konold and Pollatsek, 

these two conceptions, mean as typical and mean as fair share, are limited and closely tied to the 

“data analysis” part of statistics, whereas the latter two conceptions, mean as data reducer and 

mean as signal amid noise, are connected to the “inference and decision making” part of statis-

tics. 

 In decision-making from data, the process of data reduction is crucial in order to locate an 

informative signal amid the noise of the variability in data. Thus statistics often reports the mean 

of a data set as a “‘representative” for an entire data set. Means also furnish a useful signal for 

making inferences from samples to entire populations and for comparing multiple data sets. 

Konold and Pollatsek argue that students do not naturally gravitate to using means to compare 

data sets or to make inferences from samples to populations and that instruction needs to help 

students grow past their initial informal conceptions of average by concentrating on the “data 

analysis and decision making” perspective for averages in which the mean is a representative of 

a data set. They claim that thinking of average as “typical” or as “fair share” does not provide a 

helpful basis for making group comparisons, whereas the “data reduction” or “signal amid noise” 

conceptions are more powerful tools in such inferential settings. Konold and Polletsek’s work 

suggests that students’ initial informal conceptions of average as “typical value” or a “fair share” 

may impede their conceptual development unless teachers help them to move toward more con-

ceptually rich notions of average, such as average as “representative” or average as “signal.” 
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type of discourse is much less teacher-directed and predictable because it is “negotiated” and 

jointly determined by both teachers and students as teachers pick up on, elaborate, and question 

what students say (Nystrand, 1990, 1991). These kinds of interactions are often characterized 

by “authentic” questions, which are asked to get information (e.g., “Can you tell us how you 

decided the answer was 5?”), not to test what students know and do not know. The primary 

function of a discussion is to construct group knowledge (Bridges, 1987), and questions are the 

key to fruitful discussions. The research on questioning is vast; therefore only a brief overview 

is provided below. 

Examine and Plan Questions 

 Examining one’s own questions and questioning patterns is an important start when 

looking more closely at the classroom discourse (see, e.g., Herbel-Eisenmann & Cirillo, 2009). 

This examination alone, however, has not been shown to do enough to support teachers in facil-

itating productive discussions that “focus on mathematical meaning and relationships and make 

links between mathematical ideas and relationships” (M. Smith & Stein, 2011, p. 50). A single, 

well-formulated question can be sufficient for an hour’s discussion (Dillon, 1983). However, 

many studies have shown that while teachers ask a lot of questions, these questions frequently 

call for specific factual answers, resulting in lower cognitive thought (Gall, 1984; Perrot, 2002). 

Some question-types open up discussion, while others are more “closed” (Ainley, 1987). For 

example, one type of question takes the form of part-sentences “left hovering in mid-air for the 

student to supply the missing word or phrase” (Ainley, 1987, p. 24). An example of this ‘fill-in-

the-blank’ type of question is: “This polygon has three sides so we call it a …?” This kind of 

question is closed, both because it relates to matters of established fact and because the teacher 

has one “right” answer in mind. On the other hand, it creates the illusion of participation and 

cooperative activity (Ainley, 1987). 

 Examples of well-formulated questions are: “What is the relationship between the solu-

tions to a quadratic equation and its graph?” or “Why did you solve the quadratic equation to 

help you graph the parabola?” To answer to these types of questions, students need to provide 

more than just one-word answers because the answers are complex and require a deeper level of 

thinking to give complete answers. More open questions are often better for opening discussion 

and maximizing the chances of individuals to contribute to the discussion, yet such questions 

tend to be underused (J. Smith, 1986). It can be useful to plan not only tasks but also good ques-

tions in advance of the lesson (M. Smith & Stein, 2011), and to consider what questions we can 

ask to avoid too much “telling.” 

Be Strategic About “Telling” Information 

 In a series of papers titled Arbitrary and Necessary, Hewitt (1999, 2001a, 2001b) urged 

mathematics educators to consider teaching approaches that allow students to discover the nec-

essary (e.g., that the ratio of a circle’s circumference to its diameter is a constant number that is 

approximately 3.14), while only telling students that which is arbitrary (e.g., that this constant 

ratio of a circle’s circumference to its diameter is denoted as pi (p)). This distinction between 

what to tell versus what to allow students to discover goes against traditional teaching methods 

where teachers were typically the deliverers of all information, both arbitrary and necessary. 

 Lobato, Clarke, and Ellis (2005) pointed out several draw-backs to the “teaching as tell-

ing” practice. Telling is undesirable when it: (a) minimizes the opportunity to learn about stu-

dents’ ideas and strategies; (b) focuses only on the procedural aspects of mathematics;  
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were set up to require a high level of cognitive demand tended to decline into less demanding 

student engagement more than half of the time that they were implemented. Teachers can work 

to maintain the cognitive demand of a task by investing time before the lesson in the recom-

mendation described next. 

Anticipate Strategies That Students Might Use to Solve the Tasks and Monitor Their 

Work 

 Teaching in a manner that productively makes use of students’ ideas and strategies that 

are generated by high-level tasks is demanding. It requires knowledge of mathematics content, 

knowledge of student thinking, knowledge of pedagogical “moves” that a teacher can make to 

lead discussions, and the ability to rapidly apply all of these in specific circumstances (M. 

Smith & Stein, 2011). To support teachers in this endeavor, Smith and Stein suggested five 

practices that are intended to make student-centered instruction more manageable. This is done 

by moderating the degree of improvisation required from the teacher in the midst of a discus-

sion. Rather than providing an instant fix for mathematics instruction, the five practices provide 

“a reliable process that teachers can depend on to gradually improve their classroom discussions 

over time” (Stein, Engle, Smith, & Hughes, 2008, p. 335). The first two of the five practices are 

anticipating students’ solutions to a mathematics task and monitoring students’ actual work on 

the task as they work in pairs or groups. 

 Anticipating requires considering the different ways the task might be solved. This in-

cludes anticipating factors such as how students might mathematically interpret a problem, the 

array of correct and incorrect strategies students might use to solve it, and how those strategies 

might relate to the goal of the lesson (M. Smith & Stein, 2011). Anticipating can support teach-

ers’ planning by helping them to consider, in advance, how they might respond to the work that 

students are likely to produce and how they can use those strategies to address the mathematics 

to be learned. 

 Monitoring, as described by M. Smith and Stein (2011), is attending to the thinking of 

students during the actual lesson as they work either individually or collectively on the task. 

This involves not only listening to students’ discussions with their peers, but also observing 

what they are doing and keeping track of the approaches students are using. Monitoring can 

support teachers by allowing them to help students get ready for the classroom discussion (e.g., 

asking students to have an explanation prepared that uses mathematically precise language). It 

can also help teachers identify strategies that will advance the “collective reflection” (Cobb, 

Boufi, McClain, & Whitenack, 1997) of the classroom community and prepare for the end-of-

class discussion (M. Smith & Stein, 2011). The remaining three of the five practices for orches-

trating productive discussions (i.e., selecting, sequencing, and connecting) will be elaborated in 

later sections of this paper. 

Allow Student Thinking to Shape Discussions 
 In his work on language use in the classroom, Nystrand (1997) argued that people learn 

not merely by being spoken (or written) to, but also by participating in the discussion about the 

ideas. This theory of learning is based on the Vygotskian (1978) notion that people learn 

through social interaction. Discussions can provide students with opportunities to learn by talk-

ing with their peers in small groups and by engaging in argumentation, justification, and reason-

ing in whole-class discussions. In discussion-oriented classrooms, students’ responses inform 

the teacher questions and shape the course of the classroom talk. In particular, the teacher vali-

dates particular students’ ideas by incorporating their responses into subsequent questions. This  
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 The work of Mokros and Russell, Watson and Moritz, and Konold and Pollatsek pre-

sents developmental pathways of students’ conceptions of average and suggests conceptual ba-

ses to help create teaching and learning trajectories for the concept of the mean. Their work also 

clearly points out that in fact students do have a rich variety of conceptions of average that we 

can build on. However, students’ conceptions are in transition, and thus they may not under-

stand the important differences in concepts like mean and median, or when the use of a certain 

measure of center is most appropriate. The teacher plays a critical role in helping students to 

parse out the best appropriate uses of measures of center (e.g., Zawojewski and Shaughnessy 

2000). 

 We should add one caveat here, lest we become too caught up with the concept of aver-

age separate from the rest of statistics. Averages do not exist independent of the distributions of 

data that they summarize, and in that summary, averages alone can mask a lot of information, 

namely, the “noise,” or variability, in a data set. Centers are only one aspect of a distribution; 

shape and variability are just as important both in describing data and in aiding in inferential 

decision making. A close look at the school statistics curriculum, particularly in the United 

States, reveals that far more time is spent in school on notions of average than on variability or 

on the shape of data distributions. Often the noise in data, the variability, supplies some essen-

tial information that can become lost in a summary statistic like an average (see Shaughnessy 

and Pfannkuch [2002]). Thus, it is also important for teachers and students to work on describ-

ing and analyzing the “noise” in data, to explore variability in data, and not to limit themselves 

to finding measures of center. We recommend that you also read the companion NCTM re-

search brief to this one that discusses the importance of students’ understanding of variability. 
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Predications and Probability 
 
Elementary Strand—Investigations 
Sue McMillen, Buffalo State College 
 

The “Investigations” department features children’s hands-on, minds-on  mathemat-

ics explorations and presents teachers with open-ended investigations to enhance mathe-

matics instruction. These tasks invoke problem solving and reasoning, require communica-

tion skills, and connect various mathematical concepts and principles. The ideas presented 

here have been tested in classroom settings. 

 

A mathematical investigation is— 

 multidimensional in content; 

 open ended, with several acceptable solutions; 

 an exploration requiring a full class period or longer to complete; 

 centered on a theme or event; and 

 often embedded in a focus or driving question. 

 

In  addition,  a  mathematical  investigation involves processes that include— 

 

 researching outside sources; 

 collecting data; 

 collaborating with peers; and 

 using multiple strategies to reach conclusions. 

 

 Although this department presents a scripted sequence and set of directions for a 

mathematical exploration for the purpose of communicating what happened in this particu-

lar classroom, Principles and Standards for School Mathematics (NCTM 2000) encourages 

teachers and students to explore multiple approaches and representations when engaging in 

mathematical activities. Each investigation will come alive through students’ problem- 

solving decisions and strategies in the readers’ own classrooms. As a result of their explo-

ration, students will incorporate their reasoning and proof skills as they evaluate their strat-

egies. The use of multiple approaches creates the richness that is so engaging in an investi-

gation; it also helps students find new ways of looking at things and understand different 

ways of thinking about a problem. 

 The activities in the Predictions and Probability investigation lead students to dis-

cover the difference between experimental and theoretical probability and to develop rea-

sonable prediction strategies from a sampling experiment. Students begin by using sample 

picks to predict the colors of marbles or cubes in a basket. Then they use the Probability 

Simulation application on the TI-73 graphing calculator (see fig. 1 for instructions) to mod-

el various configurations that are the outcome of choosing different-colored marbles from a 

bag. (Alternatively, they may use actual marbles or centimeter cubes.) Students have sever-

al experiences of choosing with replacement and then using that data to predict the marble  
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Attend to the Classroom Culture 
 The Discourse Project was a five-year, professional development–based study aimed at 

understanding how mathematics teachers’ attention to their classroom discourse could impact 

their beliefs and practice over time (see Herbel-Eisenmann & Cirillo, 2009). An important real-

ization that teachers involved in the project had was that if they wanted to change the class- 

room culture by moving students toward a more open, student-centered discourse, they 

needed to invite their students to participate in this shift. For example, in a book chapter fo-

cused on her action research in the Discourse Project, middle school teacher Jean Krusi 

(2009) wrote about how she involved her students by asking them what makes a good class- 

room discussion. Together, Krusi and her students constructed a list of five norms for class-

room discussion: “Everyone is listening; Everyone is involved; Everyone puts out ideas; No 

one is left out,” and “Everyone is understanding—if not at the beginning, then by the end” (p. 

121). Krusi found that, in addition to emphasizing these kinds of social norms, she also needed 

to mention mathematical norms, such as what counts as evidence in mathematics. As the 

school year came to a close, students commented that they were participating more compared 

to the beginning of the year, and that they thought that the discussions were fun. 

 This example from Krusi’s class is consistent with other recommendations from the 

literature. For example, Chapin and O’Connor (2007) insist that the most critical condition 

that will support both language and mathematics development is for teachers to establish 

conditions for respectful discourse. Similar to Krusi’s student-generated norms, Hiebert et al. 

(1997) proposed the following norms of the classroom culture: Tasks must be accessible to 

all students; every student must be heard; and every student must contribute. Discussion is 

most productive when these kinds of prerequisite conditions of respectful and equitable par-

ticipation are established in advance (Chapin & O’Connor, 2007). As mentioned above, acces-

sible, high level tasks are also a critical element of a good discussion. 

Choose High-Level Mathematics Tasks 

 Stein et al. (2000) defined a mathematical task as a mathematical problem or set of 

problems that address a related mathematical idea or concept. The nature of mathematics tasks 

chosen by the teacher is a critical element to facilitating productive discussions for at least two 

important reasons. First, mathematics instruction is typically organized and orchestrated 

around instructional tasks. More specifically, delivery of content in mathematics classrooms 

tends to consist of working on tasks, activities, or problems. Second, the tasks with which stu-

dents engage are a critical factor in what students learn about mathematics and how they learn 

it (Stein, Remillard, & Smith, 2007). The relationship between good tasks and good discus-

sions is simple: If we want students to have interesting discussions, we need to give them 

something interesting to discuss. Activities with a “low floor” (i.e., mathematics knowledge 

prerequisites are kept to a minimum) and a “high ceiling” (i.e., mathematics activities can be 

extended to include complex ideas and relationships) tend to create mathematics experiences 

worth talking about (Gadanidis, Hughes, Scucuglia, & Tolley, 2009) and give more students 

an entry point into the discussion. Supporting productive discourse can be made easier if 

teachers work with mathematical tasks that allow for multiple strategies, connect core mathe-

matical ideas, and are of interest to the students (Franke, Kazemi, & Battey, 2007). 

 Past research has shown that teachers can find it difficult to maintain the cognitive de-

mand of high level tasks. For example, in their study, Stein et al. (1996) found that tasks that  
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What Are Some Strategies For Facilitating Productive 

Classroom Discussions? 
General Strand 
Michelle Cirillo, University of Delaware 
NCTM Discussion Research Brief, 2013 
 

 One area that has been given a great deal of attention in the mathematics education 

literature, particularly over the past 25 years, is classroom discourse. This is evident not only 

in the body of published articles but also in the many policy documents calling for more 

student talk in mathematics classrooms (see, e.g., NCTM’s Principles and Standards for 

School Mathematics [NCTM, 2000] and the Common Core State Standards [NGA Center 

and CCSSO, 2010]). Although these documents often use different language to describe 

their communication standards, they are all based on the common assumption that students 

learn mathematics best when they are given opportunities to speak about mathematics using 

the language of mathematics. Discussion, which is promoted in all of the documents, can 

therefore provide students with opportunities to communicate mathematically. 

 Because many of us learned to teach through the “apprenticeship of observa-

tion” (Lortie, 1975) in traditional class- rooms, calls to shift from recitation to discussion

-based lessons can be challenging. Many teachers are understandably unsure and over-

whelmed by the call to use rich tasks and to facilitate discussions in mathematics class 

(see, e.g., Ball, 1993; Chazan, 1993). Over the past 15 years, fortunately, the field has be-

gun to tackle the problem of providing teachers with guidelines and tools to support the 

facilitation of productive classroom discussions. Nine strategies for facilitating productive 

discussions are listed below and are discussed in more detail throughout the remainder of 

the paper. 

 

 Attend to the classroom culture 

 Choose high-level mathematics tasks 

 Anticipate strategies that students might use to solve the tasks and monitor their work 

 Allow student thinking to shape discussions 

 Examine and plan questions 

 Be strategic about “telling” new information 

 Explore incorrect solutions 

 Select and sequence the ideas to be shared in the discussion 

 Use Teacher Discourse Moves to move the mathematics forward 

 Draw connections and summarize the discussion 
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distribution in the bag, leading to a discussion of definitions for both experimental and theoreti-

cal probability (see fig. 2). After identifying probability situations as either experimental or the-

oretical, the investigation expands to predicting probabilities from data in circle graphs. This 

investigation addresses NCTM’s Content Standard for Data Analysis and Probability (NCTM 

2000) and culminates with a discussion of strategies for making reasonable predictions of theo-

retical probability. 

 

The Investigation 
 

Learning goals, rationale, and pedagogical context 

 Understanding probability and using it appropriately are necessary skills for functioning 

as an informed citizen. Principles and Standards outlines the importance of reasoning with 

probability: “Instructional programs from prekindergarten through grade 12 should enable all 

students to understand and apply basic concepts of probability” (NCTM 2000, p. 400). Proba-

bility can be determined theoretically or experimentally. This investigation allows students to 

explore both types of probability through marble- picking experiments and to “encounter the 

idea that although they cannot determine an individual out- come … they can predict the fre-

quency of various outcomes” (p. 181). Computer or calculator simulations may help students 

confront misconceptions or inaccurate intuitions about probability (NCTM 2000; Tarr, Lee, and 

Rider 2006). This investigation uses the Probability Simulation application on the TI-73 gra-

phing calculator. The application is also available for the TI-83 Plus and TI-84 Plus families of 

graphing calculators. Free downloads are avail- able at www.education.ti.com. Alternatively, 

hands- on materials can be used. In the interest of time, those using hands-on materials may 

want to decrease both the number of marbles in the containers and the number of marbles 

picked in the various activities. The lessons were field tested with two groups of students in the 

Buffalo Public Schools: a sixth- grade class at the Mathematics, Science, Technology School 

and a group of Community School no. 53 sixth-graders attending the High School Ahead Math-

ematics Academy, a Saturday morning tutoring program. 

 

Objectives of the investigation 
Students will— 

 

 differentiate between experimental and theoretical probability; 

 understand why experimental probabilities do not 

 always match the theoretical probabilities; and, 

 use a variety of strategies to make reasonable predictions of a sample space based on experi-

mental data. 

 

Materials 
 For all three lessons, each student needs a TI-73 graphing calculator with the Probability 

Simulation application loaded on it. The teacher needs an overhead TI-73 graphing calculator 

unit. Alternatively, instead of a calculator, each student could use a container and a total of thir-

ty objects such as marbles or centimeter cubes representing three different colors. Students will 

work in cooperative groups of three or four in Lessons 1 and 3 and with a partner in Lesson 2. 
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Lesson 1 

For each student— 

 

 one copy of activity sheet 1, “Mystery Marbles”  

 

For each group— 

 

 3 paper lunch bags 

 90 centimeter cubes (30 blue, 30 green, 30 red) 

 

Lesson 2 

For each student— 

 

 three or four copies of activity sheet 2, “Find My Marbles” 

 if not using graphing calculators: 

 ¤ 1 paper lunch bag  

 ¤ 90 centimeter cubes 

  (30 each of 3 different colors) 

 

Lesson 3 

For each student— 

 

 one set of probability sort cards (see fig. 3) 

 one circle graph handout (see fig. 4) 

 one recording sheet (see fig. 5) 

 if not using graphing calculators: 

 ¤ 1 paper lunch bag with 20 centimeter cubes distributed among 5 different colors 

  (for the teacher only) 

 

Previous knowledge 
 The students who did this investigation were familiar with calculating simple probabil-

ity and with the concept of a sample space. They also had experience making and justifying pre-

dictions. 

 

 

Lesson 1: Mystery Bags 

 In the first session, students predict—for each of three different bags—the number of 

cubes of each color in the bag. Before the class starts, assemble the following three bags of cu-

bes for each group of students (do not let the students see the cubes): 

 

 Bag One—2 blue, 2 green, 6 red cubes; 

 Bag Two—1 blue, 6 green, 3 red cubes; and 

 Bag Three—7 blue, 2 green, 1 red cube(s). 
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Appendix A 

An Exchange with Dr. D’Ambrosio 

 

Figures 1 and 2 document an exchange between the author and Dr. Ubiratan D’Ambrosio, an 

early contributor to the study of ethnomathematics, at UNIBAN, São Paulo, Brazil, 4 October, 

2011.  
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In Scenario 1, ask students to make a prediction without any data (i.e., without drawing 

any cubes from the container): “Bag One contains ten cubes. Some are blue; some are green; 

some are red. How many cubes of each color are in the bag? Make a prediction without looking 

or reaching into the bag. Explain how you got your answer.” 

Without additional information, many students assumed the number of each color must 

be roughly the same. Although the actual assignment of colors differed, exactly half of the stu-

dents predicted a distribution of 4–3–3 and another 42 percent predicted 4–4–2. Only 8 percent 

predicted a different distribution. Damon’s response indicates how strongly some students hold 

the misconception of the colors being equally distributed. He wrote, “3 red, 3 blue, 3 green; 1 

may be of any color.” As expected, most of the students explained that they just guessed. Lind-

sey provided a detailed rationale for the 4–3–3 answer: “Because if you divide ten by three, you 

get 3.33 … so I took out the decimal.” She then indicated she could add the remaining one to 

any of the three colors. The students were surprised to find out there were two blue cubes, two 

green cubes, and six red cubes; many students commented that they had not made good guesses. 

Explorations with Bag Two and Bag Three will counteract this mindset. 

In Scenario 2, ask the students to make a pre- diction, but reveal all of the cubes first 

(they need not predict, only report, the color distribution): “Bag Two contains ten cubes. Some 

are blue; some are green; some are red. Take turns picking a cube and displaying it on your 

desk. After all ten cubes are on the desk, tell me how many of each color are in the bag and ex-

plain how you got your answer.” 

Ask the students to discuss how they knew the answer and how this scenario differs 

from the first one. It is important that students understand the difference between predicting and 

giving an answer based on a complete set of data. 

In Scenario 3, ask students to pick cubes with replacement for a total of ten picks (i.e., 

the students have experimental data to use as they predict the contents of the bag): “Bag Three 

contains ten cubes. Some are blue; some are green; some are red. Take turns picking a cube, 

recording its color, and then putting it back in the bag. Repeat this ten times. You may want to 

use tally marks to record the picks. After ten picks, tell me how many cubes of each color are in 

the bag and explain how you got your answer.” 

In one class, picking with replacement from Bag Three (seven blue cubes, two green,  

and one red) produced five blue cubes, four green, and one red. Over half of the students pre-

dicted the bag contained five blue cubes, four green, and one red, the exact breakdown of the 

cubes that were selected. Most of the remaining students made an adjustment of plus or minus 

one, predicting six blue cubes, three green, and one red; or four blue cubes, four green, and two 

red. In the ensuing discussion, most students either had no explanation for their prediction or 

indicated that they guessed. Only a few connected the picks to their predictions by using expla-

nations such as Nelson’s: “Because she [the teacher] picked more blue [cubes] than any- thing” 

or Dyneal’s: “Because we kept on getting blues and greens and only got one red.” Even fewer 

mentioned the fact that the same cube could have been pulled out more than once. You may 

want to reinforce the concept that just because the number of picks equals the number of objects 

in the container, the results from sampling will not necessarily be identical to the contents of the 

container. 

Give each student a copy of activity sheet 1. After reading the description of the bag of 

marbles (ten each of three different colors for a total of thirty marbles), the students should rec-

ord their individual predictions in the table, explain their thinking, and then discuss their re-

sponses with their group members. Then each student should use the Probability Simulation  
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application on the TI-73 graphing calculator to set up a bag of thirty marbles with ten each of 

three different colors for picking with replacement (see fig. 1 for instructions). Have each stu-

dent use the calculator simulation to pick thirty marbles, record the results in the table, and an-

swer the remaining questions on the sheet. The right arrow key will display the number of mar-

bles for each bar in the graph. If your students are not using the calculators, have each group 

take the cubes from the three bags and redistribute them so that each bag contains cubes of all 

three colors.  

 This lesson ends with a whole-class discussion of students’ conclusions. In one class, 

just over one-third of the students initially predicted that ten of each color would be picked.  
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reasons that their predominately African-American school was surrounded by liquor stores (i.e., 

a wet area), while schools in White, upper-middle class communities were located in dry areas. 

The students exposed this inequity using mathematics, literacy, and political skills as they pro-

duced reports, editorials, charts, graphs, and maps. In this example, the teacher problematized 

the students’ circumstances and provided opportunities for them to use their knowledge and 

skills to transform the world around them. 

Traditionally, an aim of mathematics education has been to prepare students to succeed 

in the currently existing world. However, mathematics education researchers (Martin, 2003; 

Secada, 1989) argue that mathematics education needs to empower students to use mathemati-

cal knowledge to confront issues of social justice and unequal power relationships. In addition, 

the level and nature of mathematics required for success today differs significantly from that 

required in the past, and the requirements will continue to change and advance as technology 

and the needs of society evolve. For students to assume a productive and successful role in the 

future, they need to have developed critical thinking skills that will enable them to effect 

change in positive ways. Therefore, in addition to providing instruction necessary for success in 

the current system, mathematics educators need to provide opportunities to use mathematics to 

confront obstacles to their success (Martin, 2003; Secada, 1989). 

Final Thoughts 

 Mathematics educators’ shift towards viewing culture as playing a major role in the 

learning of mathematics represents a new way to think about social issues in the schools. His-

torically, scholarly mathematics was made available only to those of elite status. To this day, 

mathematical competence acts as a gatekeeper to higher-paying jobs and social classes. In re-

sponse to notions that scholarly mathematics is superior to everyday mathematics, a handful of 

ethnomathematics researchers have recognized the value of different cultures’ mathematical 

practices and have made attempts to valorize those differences. An examination of differences 

in mathematical valorization reveals how they are incorporated into issues of power and domi-

nance, especially in the school setting. 

 In 2000, the National Council of Teachers of Mathematics issued a call for educators to 

provide more equitable opportunities for students to learn mathematics. They stressed that equi-

ty does not mean providing the same experiences for all students, but rather, accommodating 

differences and providing support to help all students learn mathematics. In light of the cultural 

implications discussed here, this requires educators to expand their beliefs regarding mathemat-

ical competence and to incorporate culturally relevant pedagogy into their teaching practices. 

Clearly, culture significantly impacts the types of mathematics students learn and the methods 

used to learn them. As more research is conducted on the nature of this relationship and ethno-

mathematics, mathematics educators will have more tools to effectively teach diverse popula-

tions of students. 
 

References 
Ascher, M. (1991). Ethnomathematics: A multicultural view of mathematical ideas. New York: 

Chapman and Hall. 

Barta, J., Abeyta, A., Gould, D., Galindo, E., Matt, G., Seaman, D., & Voggessor, G. (2001). 

The mathematical ecology of the Shoshoni and implications for elementary mathematics 

education and the young learner. Journal of American Indian Education, 40 (2). 1-27. 



 

58   Utah Mathematics Teacher Fall/Winter 2013-2014  

these implications. Culturally relevant pedagogy aims to “produce students who can achieve 

academically, produce students who demonstrate cultural competence, and develop students 

who can both understand and critique the existing social order” (1995, p. 474). Below, each of 

these goals will be discussed in relation to the teaching of mathematics and a mathematics 

classroom environment. 

Students who can achieve academically. An overarching purpose of the educational 

system is to increase students’ knowledge and skill set so that they can function and contribute 

to society. Standardized tests have become highly regarded by society as a means of assessing 

this set of knowledge and skills and consequently, allocating intellectual power and privilege. 

Yet, these tests commonly assess student achievement. Ladson-Billings admits, “No matter how 

good a fit develops between home and school culture, students must achieve. No theory of ped-

agogy can escape this reality” (1995, p. 475). However, as discussed previously, standardized 

tests need not be the sole or primary indicator of success in a mathematics classroom. Mathe-

matics teachers can also gain valuable information as they listen to students’ conversations 

about their solution strategies, examine their written justifications, and observe as students pose, 

compute, and solve complex problems. In these ways, teachers can be assured of their students’ 

skills to think mathematically, and the students can develop confidence in their own abilities to 

succeed academically with mathematics regardless of their score on a standardized test imposed 

by society.  

Students who demonstrate cultural competence. Students develop cultural compe-

tence as they learn ways to “maintain their cultural integrity while succeeding academical-

ly” (Ladson-Billings, 1995, p. 476). Teachers assist students in this development of this second 

goal of culturally relevant pedagogy when they promote positive interactions within the class-

room community. These interactions should value and preserve the dignity of cultural differ-

ences, while celebrating the similarities among individuals and communities. Ladson-Billings 

(2001) also suggests that cultural competence develops in classrooms where the teacher “uses 

culture as a basis for learning” (p. 98). This means that teachers use students’ funds-of-

knowledge and prior experience as a pathway to new knowledge and skills. Students need not 

abandon their cultural values and heritage for the sake of succeeding academically.  

As students and teachers acknowledge that everyone has cultural history and assets that 

can enrich learning in the classroom, a sense of community develops. The teaching of mathe-

matics in such a setting allows for students to discuss their mathematical thinking in a support-

ive environment. If students believe that their ideas will not be valued, they will be less inclined 

to contribute to class discussions. However, students become more engaged and successful 

when they feel that the mathematical content relates to their lived experience and has meaning 

in their everyday lives. This engagement occurs when students have a well-defined sense of cul-

tural competence.  

 Students who understand and critique the existing social order. A third goal of cul-

turally relevant pedagogy involves students’ ability to critique social inequalities and effectively 

make change from a cultural perspective. Students’ opportunity for growth in this area pre-

sumes that the teacher first recognizes negative social structures and the need for change. Math-

ematics teachers can provide students with the tools to challenge social inequalities when they 

make knowledge problematic, challenge students’ views, and encourage students to think 

through, justify, and defend their perspectives. Ladson-Billings (1995) describes a group of 

middle-school students in Dallas who, at the encouragement of their teacher, investigated the 
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Davonte reasoned, “Because it is thirty marbles, and 30 4 3 = 10,” and Robert reasoned, 

“Because there are ten of each color.” Another third of the students made predictions close to 

10–10–10, such as 8–12–10 or 9–10–11, explaining that they “used probability” to choose num-

bers close to ten because there were actually ten of each color. Students whose experimental 

data varied considerably from ten blue, ten green, and ten red were surprised at first. But most 

of them reassessed their thinking in light of other students’ data from the experiment and the 

class discussion that followed. During the summary discussion, students should indicate an 

awareness that when sampling with replacement, the same object may be picked multiple times 

and that some objects may not be picked at all. 

Lesson 2: Find My Marbles 

 In the second part of this investigation, students predict the marble distribution in their 

partner’s bag of marbles after drawing marbles with replacement. Before starting, you may 

want to have students reflect on what they previously discovered about picking with replace-

ment and the actual number of marbles in the bag.   

 Have students create their own bag of marbles according to the guidelines on activity 

sheet 2. Each bag should contain thirty marbles, divided among three colors, and each student 

may use the color distribution of his or her choice. 

 Next, students switch bags or calculators with their partners, who then pick thirty mar-

bles (with replacement) and record the picks in the second column of the chart on activity sheet 

2, Part 1. 

 Students should use their data to predict and record the number of each color of marble 

in their partner’s bag and then explain their reasoning. 

 Finally, they should check the number of each color that were actually in the bag by 

looking into the bag or by viewing the settings in the calculator application (see steps 3–5 in fig. 

1). They should also record the actual numbers and their reactions. Students who finish early 

should change the number of each color in the bag and repeat the activity. Alternatively, you  

Figure 2   Kendall’s work 

Marble Color Number of Marbles 

Picked 

Predicted Number in 

the Bag 

Actual Number in the 

Bag 

 

 

A 

 

   

B 

 

 

   

C 

 

 

   

Total    
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may want to have the entire class repeat the activity. The students should use a new copy of ac-

tivity sheet 2 each time they repeat the activity. 

 Follow this activity with a whole-class discussion of the students’ estimation strategies 

and their answers to the activity sheet 2 questions. Generally, the students made predictions 

that were close to, but for the most part not exactly equal to, the numbers of marbles they had 

picked. Only a few of their explanations indicated any strategy other than guessing based on 

their picks. However, some students indicated that, based on their picks, they were confident 

about which color had either the most or fewest marbles in the bag, although they could not tell 

the exact number. For example, Dominque wrote, “C had the highest bar [on the graph] by a lot, 

so I guessed twenty-five out of thirty.” Similarly, Leatrice picked 5–12–13 and then reasoned, 

“I think my partner has [fewer] As than Bs or Cs in his bag.” The discussion made it clear that 

the students needed additional guidance to move toward applying number sense to experimental 

data in order to reasonably predict a sample space. So, the students changed the color distribu-

tion of the thirty marbles and repeated the activity once more. This time, they were told that alt-

hough each bag still contained thirty marbles (and activity sheet 2 tells them to pick thirty mar-

bles), they were not to pick thirty marbles. The hope was that requiring a number of picks that 

did not equal the number of objects would move them toward the use of proportional reasoning. 

Many students picked close to thirty times, for example, twenty-five, twenty-nine, or thirty-five 

times. Unfortunately, those numbers of picks did not easily lend themselves to proportional rea-

soning. But some chose numbers such as ten or sixty that they thought would be easy either to 

multiply or divide to reach thirty. A couple of students chose one hundred picks in order to use 

percentages in their predictions. Kendall made three hundred picks “because it was easy [to 

compute].” He then divided his experimental data by ten and rounded to the nearest whole num-

ber. (His work is shown in fig. 2.) One advantage of using technology is the ease and speed of 

generating such a large number of picks. 

 To summarize this part of the lesson, have the class repeat the activity a final time while 

you are the only person picking marbles. This will ensure that the entire class has a common set 

of data to use as a reference point for the summary discussion. Generate the picks with the over-

head calculator from a bag of marbles that you previously set up on your calculator. 

 Ask the class to reflect on their experiences with this activity and to generate a defini-

tion for experimental probability and one for theoretical probability. This class agreed that theo-

retical probability was “probability found by using the rules.” They described experimental 

probability as “when you do it and see what happens” and as “hands- on.” After agreeing on 

your definitions, have the students complete Part 2 on activity sheet 2 using the class data 

from the last repetition of the activity. Conclude the lesson by having a whole-class discussion 

in which the students compare the experimental and theoretical probabilities and the use of each 

to predict or identify sample spaces. 

 

Lesson 3: Candy Confusion 

 
 In the final section of this investigation, students continue to work with experimental 

and theoretical probability. Ask each student to sort the Probability Sort Cards (see fig. 3) into 

two groups: situations representing experimental probability and those representing theoretical 

probability. Have them compare and discuss their results with the others in their group. 
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developed bodies of knowledge and skills essential for household or individual functioning and 

well-being” (p. 133). Therefore, students’ funds-of-knowledge become a major intellectual re-

source in the classroom. They are in no way inferior to traditional academic expectations. Moll 

and his colleagues adamantly reject the notion that lack of success in school is attributed to the 

students, themselves, or to their cultures and communities. Instead, success in school depends 

the extent to which the teachers support students by connecting their home and community ex-

periences to the schools’ academic expectations. 

How can teachers bridge in-school and out-of-school mathematics? A challenge for 

most teachers exists in how to incorporate students’ out-of-school mathematical experiences 

with classroom instructional activities. This task becomes even more challenging when the 

classroom teacher’s cultural background differs significantly from that of the students. Never-

theless, the teacher remains as a pivotal element of students’ school experience. In order to pro-

vide ample opportunity to learn, teachers need to acknowledge that different discourse patterns 

may exist between home/community and school, and that these differences do not connote infe-

rior or superior forms of knowledge. A large part of the teacher’s role in the classroom, espe-

cially in mathematics, is to help students connect scholarly mathematics with everyday mathe-

matics. Many times teachers and students do not recognize the mathematics in everyday activi-

ties. By using these everyday activities to contextualize and mathematics problems, teachers 

can make mathematical concepts more accessible to more students.  

 Critics may argue that only focusing on everyday or practical mathematics restricts the 

development of more advanced mathematical concepts. To this critique, Moschkovich (2002) 

suggests a balance between everyday mathematics and academic mathematics. This balance 

serves to motivate students by helping them to recognize the value of mathematics as connected 

to their lived experience. It also helps students to develop the skills necessary to succeed should 

they choose to pursue more advanced studies in a mathematics-related field. 

How should mathematics be assessed? Alternative views of what constitutes legiti-

mate mathematics and how it is addressed in the classroom also necessitate new ways to assess 

students’ mathematical understanding. Traditional means of assessment have focused on what 

students should know and to what extent they are deficient in and given concept. This culturally 

biased approach differs significantly from more culturally inclusive assessments that focus on 

what students are doing. Alternative forms of assessment accommodate students’ diverse ways 

of knowing and their many pathways to understanding mathematical concepts. For example, 

instead of (or in addition to) a traditional paper-and-pencil exam, students may be presented 

with a real-life problem and asked to describe their solution strategy in writing or orally. Alter-

natively, students could demonstrate competence by successfully completing a mathematical 

task outside of the school setting. Naturally, these assessments should build upon students’ ex-

perience both inside and outside of school. 

Culturally Relevant Pedagogy 

 Classroom learning environments have significant implications on students’ experiences 

in any classroom, and particularly in mathematics classrooms. The ways in which a teacher 

structures lessons, assigns tasks, and responds to students’ comments send messages, for better 

or worse, regarding what types of mathematical concepts are valued and how students are ex-

pected to interact with one another. Although not specifically focused on mathematics class-

rooms, the work of Ladson-Billings (1994, 1995, 2001) on culturally relevant pedagogy aligns 

well with ethnomathematics and provides a theoretical framework through which to consider  
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 included or excluded in what the group counts as knowledge. (p. 442) 

 Often members of different cultural groups think about mathematics in ways that are 

very different from what is generally accepted as scholarly mathematics (i.e., the real way to do 

mathematics). It is important to note that these different ways of thinking are just as legitimate 

or sophisticated. For example, in the United States, particular subtraction and multiplication al-

gorithms are taught and valorized as the real way to perform these calculations. However, in 

many parts of the world outside of the United States, different methods for subtraction and mul-

tiplication are used. These algorithms are no less mathematically valid, yet they are not given 

the same value as the real way to subtract or multiply. In this way, the dominant White culture 

in the United States has defined “normal” mathematics and rejected other cultures’ methods as 

inferior. As such, advanced mathematics has become a white male-dominated field. 

Ethnomathematics presents implications for classroom teachers in that they must re-

examine their beliefs about what counts as legitimate mathematics, how mathematical concepts 

are taught, and how to assess children’s knowledge of mathematics. With these constructs in 

mind, teachers should also be aware of diverse cultures represented in their classrooms and in-

corporate culturally responsive practices into their instruction. The next sections will discuss 

issues and implications that teachers face and how they may address them. 

Expanding Mathematical Competence  
 As classroom teachers consider ethnomathematics and the influence of students’ diverse 

cultural backgrounds on learning, they must acknowledge the classroom as a mediating space 

between academics and everyday experience. This acknowledgement demands a re-

examination of the teachers’ previously held beliefs regarding mathematical knowledge, how it 

is taught, and how it is assessed. 

What counts as legitimate mathematics? The previously discussed differences be-

tween scholarly and everyday mathematics present classroom teachers with decisions of what 

types of mathematics to legitimize, promote, or valorize in their instruction. Traditional notions 

of mathematical competence have focused solely on students’ ability to accurately identify 

basic facts and perform calculations using prescribed algorithms (i.e., the students’ ability to 

achieve a narrowly predetermined standard). Mathematical competence from a cultural perspec-

tive, however, expands competence as achievement to competence as “being co-constructed by 

teachers and students in relation to classroom opportunities to learn and to what students are 

held accountable” (Diversity in Mathematics Education Center for Learning and Teaching, 

2007, p. 413). This co-construction may include alternative ways of thinking about mathematics 

based on students’ experiences inside and outside the classroom. For example, based on his ex-

periences with making purchases in real-life situations, a student may already have mathemati-

cally legitimate methods for estimating and adding or subtracting two- or three-digit numbers 

even though they may be different from the traditional algorithms taught in school. A narrow 

view of mathematical knowledge would likely exclude these alternative methods from legiti-

mate mathematics. However, teachers with a cultural perspective of mathematical knowledge 

would find value in them and help students to make connections between different elements of 

mathematical thinking. Therefore, the opportunities presented for students’ learning play a sig-

nificant role in developing mathematical competence.  

 Additionally, through their work with students from working-class Mexican communi-

ties, Moll and his colleagues (1992) have developed a conceptual framework known as funds-of

-knowledge. They define funds-of-knowledge as “historically accumulated and culturally  
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 To expand the investigation to another representation, give students a circle graph (see fig. 4) 

representing forty total candy bars of five different types. Ask them to individually estimate the theoreti-

cal probability of picking each type of candy bar and then to share their strategies and estimated proba-

bilities with their groups. In one class, two students ignored the graph entirely and initially answered one

-fifth for each of the five probabilities, maintaining their initial misconception from Lesson 1. However, 

the rest of the students used visual estimation strategies to create reasonable estimations for the probabil-

ities, with some even drawing in an additional horizontal line segment through the KitKat section in or-

der to “see where the other fourth is.” 

 Next, ask students how they could find an experimental probability for picking each type of can-

dy bar. As a class, these students decided to use a paper clip held at the center of the circle graph as a 

spinner, spin forty times, and then use the number of spins in a section divided by forty as their estimate 

for that section. 

 The culminating activity for this investigation is for students to use experimental probability to 

predict how many of each type of candy bar is in a bag containing twenty actual candy bars. Before the 

start of class, assemble a bag of twenty marbles in five colors to model a candy distribution of your 

choice. You may use marbles or use the Probability Simulation application set for five colors. Inform the 

students that the distribution in your bag does not match the circle graph in figure 4, so you may want 

them to put away the circle graphs. Give each student a recording chart (see fig. 5) to organize their 

work. Let each student individually decide how many marbles they would like picked from the bag be-

fore making their candy bar predictions, with a maximum of five hundred picks. If you are not using a 

calculator, you will want to choose a smaller maximum number of picks. Display the actual cubes or the 

calculator screen on the over- head as you make the picks.  
 About half the students avoided the use of proportional reasoning by making their pre-

dictions after twenty marbles were picked, because “there are twenty in the bag.” About 25 per-

cent used fifteen marbles to predict, indicating that “fifteen is close to twenty.” The remaining 

students (about 25 percent of the class) picked numbers slightly larger than twenty: either twen-

ty-five, thirty, thirty-five, or forty-five. The students enjoyed watching the marble simulation 

and wanted to keep going until five hundred marbles had been picked, even though they had all 

made their predictions based on sixty or fewer picks. I completed the five hundred picks and 

displayed the results, but there was no evidence that they used the larger number of picks to 

modify their predictions. 

 

 

Beyond The Lesson 

Students enjoyed using the marble simulation to 

predict and continued to use it in subsequent clas-

ses as time allowed. They changed the difficulty by 

modifying the number of colors, the number of 

marbles in the bag, or the number of marbles 

picked. Also, gathering such experimental data is 

one method to determine whether or not a game is 

fair.  After a lesson on fair games, some students 

created their own games based on picking marbles 

and then used the simulation to verify that the 

games were fair. Some of them also solved a fair 

game challenge, Challenge 26, retrieved from 

www.figurethis.org. 

Figure 4  A sample circle graph 

Milk  

Chocolate 

Special 

Dark 

Mr.  

Goodbar 

Kit Kat 

Peanut 

Butter 

Cups 
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Reflections 
 Leading this investigation confirmed to me that some probability concepts are not intui-

tive to students. For example, in Lesson 3, the students saw no value in picking a large number 

of marbles before making a prediction, although I offered to pick as many as five hundred mar-

bles using the Probability Simulation application. One advantage of using a calculator simula-

tion is its quick generation of large samples of data. These investigations would have taken sig-

nificantly longer if the students had picked the same number of marbles by hand for each activi-

ty. In addition, the students did not have to tally the picks, because the simulation would display 

the total number of each color picked at any point. 

 Probability plays a role in the everyday decisions people make. Students develop their 

own informal concepts of experimental and theoretical probability outside of the classroom. 

This investigation focused on a series of activities that emphasized gathering experimental data 

and then making reasonable predictions. The activities and discussion involved in this investi-

gation provide opportunities to confront some common but inaccurate ideas about probability 

and to progress toward a deeper understanding of probabilistic concepts. Whether students use 

available technology or hands-on materials, “it is useful for students to make predictions and 

then compare the predictions with actual outcomes” (NCTM 2000, p. 254) to help correct mis-

conceptions about probability. 

 

References 
National Council of Teachers of Mathematics (NCTM). Principles and Standards for School 

 Mathematics. Reston, VA: NCTM, 2000. 

Tarr, James, Hollylynne Stohl Lee, and Robin Rider. “When Data and Chance Collide: Drawing 

 Inferences from Empirical Data.” In Thinking and Reasoning with Data and Chance, 

 006 Yearbook of the Nation- al Council of Teachers of Mathematics (NCTM), edited 

 by Gail Burrill and Portia C. Elliott, pp. 139–49. Reston, VA: NCTM, 2006.  

 

 Figure 5     Recording Sheet 
You may choose between 1 and 500 picks.  How many picks do you want before  

You make your predication?   

Number of picks? 

Type of Candy Number Picked Experimental 

probability 

Predicted Num-

ber 

Theoretical 

probability 

A (Kit Kat)     

B (Milk Choco-

late) 

    

C (Mr. Goodbar)     

D (Peanut Butter 

Cup) 

    

E (Special Dark)     

Total   20  
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in an artificial school setting. In light of this research, mathematics in the schools should be in-

troduced in contests that allow students to connect with everyday human activities—to experi-

ence mathematics in their own world. These implications for the classroom will be discussed in 

a later section. 

 Similarly, research among members of the Shoshoni tribe (traditionally inhabiting parts 

of Utah, Idaho, and Wyoming) in the western United States, reveals a different view of mathe-

matics usage than is taught and valorized in the schools. The study, conducted by Barta et al. 

(2001), described culturally specific uses of mathematics in traditional living practices among 

the Shoshoni. Through a series of interviews, tribal leaders discussed their knowledge of the 

Shoshoni history, culture, customs, and practices. Although the Shoshoni language does not 

have a word equivalent to the English mathematics, the actions of mathematics seem to be em-

bedded into everyday living and linked to the Shoshoni way of tribal life.  

 Interview questions specifically addressed six practices of mathematics identified as 

universal by Bishop (1988): counting, locating, measuring, designing, playing, and explaining. 

The counting system was based on groups of ten and ranged from zero to countless or infinity 

(i.e., more of those than there are hairs on a horse). Activities of counting or mathematical oper-

ations always occurred in the context of quantifying objects, people, or tribal events. Interest-

ingly, division (e.g., a hunter bringing a deer to the camp to be divided amongst the families) 

did not always denote equal parts. Rather, each portion was determined by each individual’s 

need. Even though the portions may not be equal, each person received their share. The location 

of people or objects was recorded using topography and star positions. Most measurement de-

vices included body parts, sticks, poles, or strips of rawhide. These individualized measures al-

lowed for proportional appropriateness for different users (e.g., clothes, bow and arrows). To 

outline a circle for a sweat lodge, one would step off the distance of the radius, and then use a 

strip of rawhide nailed down at one end to draw the circle. Other measurements such as volume, 

time, distance, and weight were determined by comparisons to everyday occurrences (e.g., a 

particular bowl or rock, or the number of “suns”). Designing took the form of intricate bead-

work or functionality of tools and buildings. As in other cultures, the Shoshoni played many 

games. Almost all of these games incorporated some sort of strategy and keeping track of 

scores. Explaining was a critical part of the Shoshoni tradition because it was the method by 

which customs were communicated and passed down from generation to generation. The tribal 

leaders demonstrated this communication as they related the aforementioned mathematical ac-

tivities.   

 It is clear from the examples of the Brazilian children and the Shoshoni tribe that mathe-

matical symbolism and representation is peculiar to the culture from which it is derived. When 

viewed from a different cultural lens those representations may or may not have the same math-

ematical meaning (Barta et al., 2001). For this reason one culture’s way of operating with math-

ematics may receive a lesser amount of value than that of other culture—especially if one cul-

tural group receives less privilege than the other. These varying degrees of valorization contrib-

ute to what Presmeg (2007) describes as “symbolic power” and “symbolic violence” ( (p. 442). 

Symbolic power has traditionally been granted to those groups with cultural, symbolic, and lin-

guistic capital—those exclusively espousing scholarly mathematics. Presmeg defines symbolic 

violence as what individuals experience when their cultural capital is devalued. 

 Symbolic violence is a sociological construct. In that capacity it is a powerful lens with 

 which to examine actions of a group and ways in which certain types of knowledge are 
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machines. This development of more complex instruction manuals and machinery necessitated 

a broadening shift in mathematical knowledge. Scholars even began to use more non-technical 

language in their written works. With the industrial age scholarly mathematics entered the 

school system as part of a way to ensure the education and economic dominance of a rising aris-

tocracy. Today, amid the ideals mass education, scholarly mathematics assumes a large part of 

the overall curriculum (D’Ambrosio, 1985). Throughout this history, it is important to point out 

that scholarly mathematics consistently received more credibility and legitimacy than practical 

everyday ways of doing and thinking about mathematics. Although relatively more of the popu-

lation has access to scholarly mathematics than in ancient times, there still exists a belief that 

everyday mathematical knowledge is a lesser form of real mathematical competence. The fol-

lowing section describes research efforts to unveil and legitimize such everyday mathematics 

and its implications for teaching and learning. 

Valorization of Mathematical Practices 

 Valorization refers to “the social process of assigning more value to certain practices 

than to others” (Presmeg, 2007, p. 443). As described previously, western academic mathemat-

ics receives valorization and prominence in most school systems. However, western academic 

mathematics represents just one example of a culturally derived mathematical system. Many 

other cultures have similarly developed systems of thinking and knowing mathematics, and 

those mathematical processes are just as valid as those valorized in school settings.  

Carraher, Carraher, and Schliemann’s research in 1985, challenged the valorization of particular 

mathematical practices over others. Their research with young street vendors in Recife, Brazil 

revealed children’s computational strategies different from those taught in the school. The chil-

dren ranged in age from 9 to 15 years old, in schooling from one to eight years, and were very 

poor. Researchers (i.e., customers) interviewed each child during the course of a normal sales 

transaction (i.e., a real-life context), presenting various mathematical tasks. Sometimes, the ac-

tual purchase was carried out. At other times, the researcher asked the child to calculate possi-

ble purchases. Following this informal interview, the child was asked to complete a formal test 

comprising items with calculations identical to those problems solved during the transactions on 

the street. 

 The children’s performance on mathematical problems embedded in real-life contexts 

(i.e., in the informal interview) far exceeded that on school-type word problems and context-

free computational problems (i.e., the formal test). In fact, when given in a school-type setting, 

most children had no way of accessing the knowledge that they had just recently employed with 

the exact same numbers on the streets. Even formal test items presented as story problems did 

not elicit the same level of mathematical problem solving as did the transactions on the street. 

Clearly, the real-life context of the initial interview played a critical role in the children’s access 

to the mathematics. Some may argue that the context gave a sense of concreteness to the task 

and decreased its rigor. However, all calculations on the street were carried out through mental 

abstractions. Therefore, the children utilized problem-solving strategies beyond the concrete. 

 Carraher et al. maintain that following school-prescribed routines actually interferes 

with problem solving. These routines tend to strip away connections to real-life and diminish 

mathematics to mere procedures that students may perform without understanding the underly-

ing mathematics. Based on their findings, Carraher et al. question the claim that mathematics 

taught in the schools provide richer and more powerful learning opportunities. The children in 

this study showed more understanding of mathematical ideas in their own natural setting than  
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Figure 3— Probability Sort Cards 

 

Sue McMillen, mcmillse@buffalostate.edu, teaches mathematics and mathematics education 

courses at Buffalo State College, Buffalo, NY 14222. She also provides content-based profes- 

sional development to in-service teachers. 

 

Edited by Jodelle S. W. Magner, magnerjs@buffalostate.edu, who teach mathematics and math-

ematics education courses at Buffalo State College in Buffalo, NY 14222. “Investigations” 

highlights classroom-tested multilesson units that develop conceptual understanding of math- 

ematics topics. This material can be reproduced by classroom teachers for use with their own 

students without requesting permission from the National Council of Teachers of Mathematics 

(NCTM).  

 

 

Justin flips a coin 10 times and  

gets 7 heads.   

He says the probability  

of a heads is 7/10. 

Susan says the probability  

of flipping a coin  

and getting a heads is 1/2 

because there are 

two sides and one is heads. 

Maliik reaches into a bag of 5 mar-

bles and picks out 3 blue marbles. 

He says the probability of picking a 

blue marble is 3/5. 

Jemario uses the Probability Simu-

lation APP to pick a marble  

from a bag containing 

20 marbles. He replaces the marble 

and picks again. After 17 picks, he 

says the probability of picking a red 

marble is 17/20. 

Mikayla looks at a die 

and says the probability of rolling a 

3 is 1/6. 

Leatrice rolls a die six times 

and gets the following numbers: 4, 

5, 3, 4, 1, 1. She says the probability 

of rolling a 3 is 1/6. 
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Activity Sheet 1. Predictions and Probability  

Name    

MYSTERY MARBLES 
 

A bag contains a total of thirty marbles. 

There are three different colors of marbles: Color A, Color B, and Color 

C. 

 

There are ten marbles of each color in the bag. 

 

Suppose you pick a marble, write down its color, and then return it to the bag. Predict how 

many times a marble of each color will be picked if you do this thirty times. Remem- ber 

that each time you pick a marble, you return it to the bag before picking again. 

 

 
 
 
1. Explain how you arrived at your predictions. 
 
 
 
2. Now use bags of marbles or the Probability Simulation APP (application) to pick a marble and re-

turn it to the bag. Do this a total of thirty times. Record your results in the table above. You can use 
the right arrow key to see the number of marbles for each bar in the graph. 

 
 
 
3. Do your actual results match your predictions? If not, how are they different? 
 
 
 
4.  Should your actual results match your predictions? Explain why or why not. 
 

  
Marble Color Predicted 

Number 
Actual  

Number  

Picked 

A 
    

B 
    

C 
    

Total 
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calculations with numbers—the way in which they learned it themselves. Recent theorists have 

taken a more broad view than this limited institutionalized view of mathematics. D’Ambrosio 

(1985) and Bishop (1988) advocated for a broadening of what counts as legitimate mathemat-

ics. Bishop identified six universal practices of mathematics: counting, locating, measuring, de-

signing, playing, and explaining. He argues that these practices define the development of 

mathematical knowledge in every cultural group. Still, others have advocated for a balanced 

view between the formal and human aspects of mathematics (see Presmeg, 2007).  

Definitions of Ethnomathematics 

 Ethnomathematics has emerged as a field of study that examines the relationship be-

tween culture and mathematics. However, due to the varied definitions of both culture and 

mathematics, there exist some difficulties in its definition. D’Ambrosio (1985), considered the 

father of ethnomathematics (see Appendix A), described it as on the border between cultural 

anthropology and the history of math. 

 Mathematics is adapted and given a place as ‘scholarly practical’ mathematics which we 

 will call, from now on, ‘academic mathematics’, i.e., the mathematics which is taught 

 and learned in the schools. In contrast to this we will call ethnomathematics the mathe

 matics which is practiced among identifiable cultural groups…. Its identity depends l

 argely on focuses of interest, on motivation, and on certain codes and jargons which do 

 not belong to the realm of academic mathematics. (italics in original text, p. 196) 

In this view ethnomathematics is a dynamic and evolving system of knowledge by itself. The 

values and language of the particular culture determine its identity. Ascher (1991) takes a 

slightly different approach in defining ethnomathematics as “the study and presentation of the 

mathematical ideas of traditional peoples” (p. 188). This view presents it as a mathematical 

window on other cultures. Even though they differ in perspective, both of these definitions 

broaden the scope of mathematics to include marginalized everyday practices not traditionally 

included in “academic mathematics.”  

 The remainder of this paper will describe briefly the development of mathematics edu-

cation in Western history (a thorough historical account of all cultures’ mathematical develop-

ment is beyond the scope of this paper); how this development relates to the marginalization of 

everyday mathematical practices of non-dominant cultures; and address specific implications 

for classroom instruction. 

Historical Overview 

 Historically, scholarly mathematical knowledge has received exclusive prominence in 

society and in the educational system. Since ancient times, mathematics has developed along 

two distinct paths: scholarly and practical. Ancient Greeks and Romans reserved scholarly 

mathematics for the select few responsible for state affairs or for tracking planetary orbits. Prac-

tical mathematics addressed the needs of manual workers or merchants. Thus upper and lower 

class structures were maintained, in part, by the accessibility and exclusive valorization of 

scholarly mathematical knowledge. In the Middle Ages, practical mathematics began to approx-

imate scholarly mathematics with the introduction of Arabic numerals and translation of Eu-

clid’s Elements (D’Ambrosio, 1985). These were the first steps in making scholarly mathemat-

ics accessible to more than just the upper class.  

 The Renaissance period saw a change in labor structures such that laborers required a 

different knowledge set in order to perform their tasks. For example, bricklayers needed to in-

terpret an architect’s complex design plans; inventors needed others to help reproduce their new 
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Ethnomathematics: The Role of Culture in the Teaching 

and Learning of Mathematics 
 
General Strand 
Katie Anderson-Pence, Utah State University 
 

 In the past 30 years, mathematics education has experienced a major perceptual 

shift in the role of culture in the learning and teaching of mathematics. This shift in think-

ing has caused many researchers and educators to re-examine the historical development 

and practices of mathematics. Historically, many have maintained the culture-free nature of 

mathematics and that numbers have a universal quality about them. Can one truly divorce 

mathematics from culture, though? According to Zaslavsky (1996), cultural influences 

have a great impact on the development of mathematical thought for individual learners 

and for society in general. Hence, mathematics, as understood by any particular individual 

or society, is a cultural product. As definitions of culture and mathematics vary among aca-

demic researchers, it becomes important to explicate the meanings around which this dis-

cussion will center. 

Definitions of Culture 
 Volumes have been written as authors have attempted to define and examine the 

effects of culture on all aspects of society. Stenhouse (1967) observed that culture involves 

the shared understandings through which individuals interact (i.e., communicate) with each 

other. This definition emphasizes the role of communication in culture, which has particu-

lar significance in education. In this sense, the construct of culture serves as an all-

encompassing umbrella under which all human communicative activity may be examined. 

Culture has also been viewed as dynamic and in a constant state of transformation. This 

transformative view of culture underscores the importance of negotiating social norms in 

the classroom. Individuals transform or weave their culture through “webs of signifi-

cance” (Geertz, 1973, p. 5) based on shared experience. 

 Culture also applies to macro-, meso-, and micro-levels within an educational 

sphere (i.e., society, school, classroom). The actions of teaching and learning exist in cul-

tures that vary greatly from society to society, from school to school, and even from class-

room to classroom. Nickson (1994) echoes Stenhouse’s sentiments when he describes this 

culture as the “invisible and apparently shared meanings that teachers and pupils bring to 

the mathematics classroom and that govern their interaction in it” (p. 8). The negotiation of 

these interactions or social norms is essential as students engage in mathematical thinking 

in the classroom (Cobb & Yackel, 1996). Therefore, the culture of a classroom determines 

the type of learning that takes place and greatly affects the types of experiences in which 

students engage. As will be discussed below, this classroom culture can also interact with 

students’ societal (i.e., home) culture in either positive or negative ways. 

Definitions of Mathematics 

 Much disagreement exists within the mathematical community regarding the defini-

tion of mathematics. Generally, it has been described as “the language and science of pat-

terns” (Steen, 1990, p. iii). Most individuals would describe mathematics as formal  
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Activity Sheet 2. Predictions and Probability  

Name    

FIND MY MARBLES 

Part 1 

Assemble a bag of marbles or use the Probability Simulation APP            

to create a bag of marbles. 

 

Your bag should contain a total of thirty marbles. There are three dif-

ferent colors of marbles.  Divide your thirty marbles among the three 

colors however you like. 

 

Switch calculators with your partner. 

 

Use the Probability Simulation APP to pick thirty marbles from your partner’s bag. When you 

have thirty marbles, fill in your results on the chart to the right. You can use the right arrow 

key on the calculator to see the number of marbles for each bar in the graph. 

 

 

 

 

 

 

 

 

 

 
1.  Predict how many marbles of each color your partner has in his or her bag. Explain how you arrived at your 
predictions. Remember that there are thirty total marbles in the bag. 
 
2.  Now check the calculator settings to see how many of each color are in the bag. Are you surprised? Why or 
why not? 
 
Part 2    
 

  

 

  
Marble Color 

  
Predicted 

Number 

Predicted 

Number in 

Bag 

Actual Number 

in Bag 

A 
      

B 
      

C 
      

Total 
      

  
Marble Color 

  
Experimental 

Probability 

Theoretical  

Probability 

A 
    

B 
    

C 
    

Total 
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Problems from  Teaching Children Mathematics 
 
Elementary Strand 
NCTM—Teaching Children Mathematics 
 
Statistics and Data Analysis  
1.  Your heart is a very strong muscle that works 24 hours a day, whether you are awake or 

asleep. Take your pulse for one minute. Use your pulse rate to determine how many times 

your heart beats in a day, a week, and a year. Compare your results with others' results. 

Create an information chart for your classmates. Research heart facts on the Internet or in 

your school's media center and include this information on your heart chart. Write your 

own mathematics heart problems and include an answer key. Ask your teacher to present 

your chart to the class. 

2.  How many hours do you and your family watch television each week? Keep a log to 

record the total number of hours that family members watch TV during a week. If you con-

tinue to watch TV at that week's rate, how many hours would you watch in a month? Dur-

ing a summer? In a year? At your weekly rate, how many hours would you watch televi-

sion in one year? Too much of anything is not good for us. Log the time that you spend 

running and playing in the fresh air. How do the times compare? 

3.  Choose three or four containers of different sizes and shapes (for example, a pan, jar, 

glass, and so on). Put the same amount of water-for example, 1 cup-in each container. 

Measure and record the amount of water remaining in each container every day for a week. 

On the first day, predict in which container the water will evaporate first. In which one will 

it evaporate last? Based on your data, after the third day adjust your predictions as needed 

and predict when all the water will evaporate from each container. 

 
Probability/Combinatorics  
1.  Write the numbers from 2 to 12 in a column. If you roll two dice and add the numbers, 

which sum would be most likely to occur? Roll the dice, add the numbers, and record the 

sum with a tally mark next to the matching number on your paper. Continue the experiment 

until one of the numbers has ten tally marks. Which numbers received most of the tally 

marks? Which number received the fewest? Why? Was your prediction correct? 

2.  Form a line with three other students. The first person in line shakes hands with each 

student in line. How many handshakes are exchanged? The next person shakes hands with 

all students who have not already shaken his or her hand. How many handshakes were ex-

changed this time? Continue until each person in line has shaken hands with everyone else. 

3.  How many total handshakes were exchanged by the four students? Predict and then de-

termine how many handshakes will occur for five and six students. 

How many different fractions can you write using only the digits 1, 2, 3, and 4? Be sure to 

include fractions greater than 1. 
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At this point, I was curious to see if G and H were images of each other under inversion of C1 

and inversion of C2. To do this, I followed the same process as I did to find P’ (see construction 

of C1 above). As you can see from Fig 3, G and H appear to be images of each other under in-

version of C1 and C2-  Now if G and H really are images of each other, then we can use C-5.11 

resulting in the conclusion that any circle containing G and H must be orthogonal to both C1 

and C2. 

 

As stated, G and H look like they are images of each other but it is possible that my construc-

tion is misleading regardless of utilizing GeoGebra. To prove that G and H are images of each 

other, we rely on the fact that C3- is orthogonal to both C1 and C2. Because C3 is orthogonal, we 

know that any point on C3 must be inverted to a different point on C3. To find out which point 

G maps to, construct a ray from E through G. Notice in Fig 3, combined with the knowledge 

that G and H lie on the line connecting E and F, H must be the image of G under inversion of 

C2. Similarly, G must be the image of H under inversion of C1. By using C-5.11, we can con-

clude that any circle containing both points G and H must be orthogonal to both C1 and C2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

Wallace and West - Wallace, Edward C. and Stephen F. West, Roads to Geometry, 3rd edition, 

Pearson Education, Inc. 2004. 

Note:  To learn more about inversion, Read Chapter 5 Section 5 of Wallace and West (pgs. 307-316). 

 

 

 

 

 

Fig 3 
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To find P’: 

1 – Construct a ray from A through P.  

2 – Construct a line perpendicular to 

ray through P, and where the perpen-

dicular line intersects C3 we place and 

label the intersection point as C.  

3 – Construct a line segment from A to 

C.  

4 – Construct a line perpendicular to 

the line segment through C.  

5 – Where this line intersects the ray 

through P is where P’ lies.  

6 – Create a third point Q, which is not 

collinear with P and P’.  

 

According to C-5.11 the circle (C1) 

defined by P, P’, and Q will always be orthogonal to C3 (Fig 1). C2 was created similarly but 

using different points. Creating C1 and C2 this way ensures that they are both orthogonal to C3. 

 

7 – After constructing the 3 circles, use a tool in GeoGebra to find the center of both C1 and C2 

and label points F and E respectively. (Recall that the perpendicular bisector of any secant line 

of a circle contains the center point of each circle).    

8 – Connect E and F, and notice that line segment EF  intersected C3 in two places. If not, then 

the Allred-Spencer Theorem has no use. Although if you are using GeoGebra then you can 

move either of the two circles so that line segment EF will intersect C3 in two points. The two 

points where line segment EF intersects C3 label as G and H (order does not matter).  

 

Fig 2 displays the steps to this point, in the GeoGebra construction.  Note, the lines, rays, 

points, etc… are hidden, and not erased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 

Fig 2 
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Overcoming the “Run” Response 
 
Middle School Strand 
Patricia E. Swanson—San Jose State University  
 
Strategies that foster self-awareness, help regulate emotions, and encourage problem-

solving perseverance can turn mathematical fight or flight into re-engagement. 

 

“ This problem triggered the run response in my brain.” 

Amy, seventh grade 

 

 Amy’s reaction to a challenging story problem reflects the anxiety that many of us 

face when struggling with difficult mathematics problems. Recent research suggests that it 

is not simply experiencing anxiety that affects mathematics performance but also how we 

respond to and regulate that anxiety (Lyons and Beilock 2011). Most of us have faced 

mathematics problems that have triggered our “run response.” The issue is not whether we 

want to run, but rather how we ultimately turn around and re-engage with the problem. 

 This article examines both teachers’ and students’ emotional reactions to challeng-

ing mathematics problems and, more important, the strategies they use to cope with anxiety 

and to re-engage and grapple with these problems. These coping skills are embedded com-

ponents of the first essential Standard for Mathematical Practice identified in the Common 

Core State Standards for Mathematics: “Make sense of problems and persevere in solving 

them” (CCSSI 2010, p. 6).  Self-awareness and regulation are essential, and often ignored, 

components of mathematical problem solving. This article examines how these skills can 

be modeled, taught, and learned. 

 This work stems from a multiyear initiative designed to embed pertinent dimen-

sions of social-emotional learning (SEL) into preservice teacher education. In selected clas-

ses, we are piloting specific strategies designed to develop both— 

1.  candidates’  social-emotional skills for teaching; and 

2.  candidates’ ability to foster students’ social-emotional skills for learning. 

 Although many would view mathematics methods as an unlikely setting for this 

work, I suggest that teaching and learning mathematics is intertwined with the development 

of social and emotional learning skills essential to motivation, self-efficacy, and productive 

disposition toward mathematics (Kilpatrick, Swafford, and Findell 2001). These skills 

are particularly relevant for young adolescent learners whose social and emotional needs 

are closely tied to academic achievement (Bobis et al. 2011; Zollman, Smith, and Reisdorf 

2011). This article will explore strategies for teaching emotional awareness and self-

regulation, essential social-emotional learning skills for helping young adolescent learners 

engage in mathematics problems that they find difficult or even frightening. 

 

Teacher Candidates 

 I began exploring self-awareness and problem solving with the preservice teacher 

candidates in my mathematics methods course. Their emotional reaction and self-regulation 
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when faced with difficult mathematics problems provided the initial insights into how  to pur-

sue this work with their students. I asked teacher candidates to describe their immediate emo-

tional reaction after reading the following problem from a middle school textbook. 

 

Multi-Step Problem 
The density of a substance is the ratio of its mass to its volume, written as a unit rate. 

 

1. Calculate A 500 cubic centimeter sample of sea water has a mass of 514 grams. Find its 

density. 

2. Calculate A 300 cubic centimeter sample of an iceberg has a mass of 267 grams.  Find 

its density. 

3. Compare Which is denser, sea water or an iceberg? Explain why your answer is reason-

able. (Larson et al. 2008, p. 263) 

 

Some candidates expressed confidence: 

 

 “Excited! Love math!” 

 “Love them [word problems]; way better than just digits and symbols.” 

 

Many more expressed anxiety: 

 

 “Oh *#*; this may take a while.” 

 “Nervous, I’m an English major. Ahhh! . . .” 

 “Fear. Math is not a subject I feel confident in doing or teaching. This problem makes me 

feel frustrated and disappointed in my own math skills.” 

 

 The following statements were made by the anxious, not the confident, teacher candi-

dates. It was intriguing to hear the wealth of creative ways they used to talk themselves into re-

engaging with the problem. They employed a variety of self-talk (Meichenbaum 1977) strate-

gies, internal conversations with themselves, to shape their feelings and behaviors. These strate-

gies helped them cope with their anxiety and regulate how 

they would re-engage in mathematical problem solving. 

 

 “I take a deep breath and say, ‘Break it down, it’s OK, you can do this.’ I start to draw a pic-

ture to help myself visualize. . . .” 

 “ ‘OK, take it one step at a time. Who cares how long it takes to solve? When you’re done, 

double check. . . .’ ” 

 “Reread the problem several times until [the] words and numbers start making sense. Draw/

write out the problem. Work through it out loud. Make it visual so it makes sense. Ask 

questions.” 

 “Read the problem first, breathe, brainstorm, and solve what you know.” 

 

 These prospective teachers recognized their stress and employed strategies to both re-

duce their anxiety and make sense of the math. They alluded to classic mathematics problem- 

solving strategies identified by Pólya (1957) including— 
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The Allred-Spencer Theorem 

 
High School Strand 
David Spencer, Juab Junior High School 
 

 The purpose of this paper is to clarify a theorem discovered by a colleague from my 

Math 3100 class (Foundations of Geometry). I have found no reference to a name in my 

research either online and/or other available resources. If there exists additional infor-

mation I would appreciate correspondence at spenceaye@yahoo.com. The original discov-

ery is credited to my colleague (Allred), thus the reference to the theorem, as such; Allred-

Spencer Theorem. 

 

Allred-Spencer Theorem: 

 

Given 2 circles, C1 and C2, which are orthogonal to a 3rd circle, C3, such that the line con-

necting the center of C1 and C2 intersects C3 at two points,  A & B, then any circle contain-

ing both points A & B will be orthogonal to both C1 and C2. 

 

I will be using a corollary from a course text book found in the works cited section, along 

with the definition of orthogonal. 

 

Corollary 5.5.11: (C-5.11) 

“If P and P’ are distinct points that are images of each other under an inversion in circle 

O, then any circle containing both P and P’ is orthogonal to circle O.” (Wallace & West – Pg. 

315) 

  

Orthogonal (Definition): 

“Two circles are said to be orthogonal if the radius drawn from one of the circles to a 

point of intersection is perpendicular, at that point, to the radius drawn from the other cir-

cle.” (Wallace & West – Pg. 179 (This definition is found within exercise 37 on the men-

tioned page.)) 

 

In instrument used in the proof is a free downloadable geometry program called GeoGebra. 

GeoGebra.  My process began by utilizing the GeoGebra program to create two circles or-

thogonal to a third circle.   To duplicate the process, I will outline my steps.  First, create 

and label the third circle (C3), and find the image of a point P (P’), in which point P lies 

inside of C3.   
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1. understand the problem (i.e., “draw a picture to help myself visualize”); 

2.   choose a strategy (i.e., “brainstorm, and solve what you know”); 

3.   follow the strategy (i.e., “work through it out loud”); and 

4. evaluate the strategy (i.e., “ ‘when you’re done, double check’ ”). 

 

 To cope with their anxiety, they re- minded themselves to slow down and breathe. To re

-engage, they searched for and used known aspects of the problem. Their comments indicated  a 

strategic integration of emotional self-awareness, coping, and problem- solving skills—all at-

tributes that are well worth modeling and teaching to students. 

 

Self-Awareness in Middle school students 
 The density problem was posed to an academically diverse group of sixth- grade 

through eighth-grade students in a rural school. I asked the students to describe their emotional 

reaction to the same problem. Although I knew that they had been exposed to the necessary 

math, their reactions mirrored those of my less confident teachers: 

 

 “It triggered the run response in my  brain.”  (Amy) 

 “This doesn’t make any sense to me. I’m confused with the first sentence. I just want to for-

get about it.” (Mike) 

 “It is really hard, and I would feel terrified of failing it. I haven’t been taught  this.” (Gloria) 

 “I can’t do it. I do not know what to do.” (Cecilia) 

 “It looks hard and complicated.” ( Juan) 

 “I begin to freak out as I read and reread the problem.” (Cory) 

 “What the heck are they talking about?”  (Bill) 

 

 Some felt anger, and others appeared hopeless. Most felt some degree of fear. I asked 

them what they would say to themselves to cope with their feelings and talk themselves through 

the problem. Most looked baffled by the question and simply said they do not talk themselves 

through problems. They stop working or ask for help. Only one student, Cory, said he would 

reread the problem and look for parts he knew. 

 I showed them the kinds of strategies my teacher candidates used, but first I let them 

read some of my prospective teachers’ reactions to the problem. They were amazed and highly 

entertained that teachers’ emotional reactions to difficult problems could mirror their own. 

We talked about recognizing how a problem might scare them and how to calm down and take 

their time. These self-talk strategies acknowledged and addressed students’ emotional and phys-

ical reactions to the problem. We then practiced problem-solving self- talk for re-engaging and 

addressing the cognitive demands of the problem. 

 We studied the picture of an iceberg that appeared next to the problem in the textbook 

and decided to try Cory’s strategy and “reread the problem.” I read it aloud to allow struggling 

readers to think about the problem. Although they were “freaked out” at the academic language, 

stu- dents began to pick out words they knew (“solve what you know”). Mike knew about vol-

ume and mass and gave a credible description of density as the size of something in relation to 

its weight. We discussed the density of their math book compared with  the density of a stuffed 

animal that is in the school’s reading center. Gloria commented that ice floats. The group pon-

dered why and how that might be related to the density of the iceberg. They proposed that since 

http://www.corestandards.org/Math
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icebergs float, they should be less dense than seawater.  

 I commented that students had essentially answered the problem by combining what 

they knew with what they figured out without ever doing any math. They exchanged the smug 

looks of students who had beat the system. 

 Nonetheless, we decided to engage in the math by trying the step-by-step approach next 

and built the ratio for density, density = mass/volume, from the sentence of the problem. I 

helped stu- dents link mass to grams and volume to cubic centimeters, and they built 

the ratio for the density of seawater,  d = 514 g/500 cc. They eagerly set up the iceberg ratio, d 

= 267 g/300 cc, on their own. Amy noted that the sea- water ratio was more than 1, whereas the 

iceberg ratio was less than 1, so seawater must be more dense than the iceberg. They had essen-

tially solved the last part of the problem by acknowledging and coping with their emotional re-

action, re-engaging, and taking time to make sense of the math. Mike, who initially wanted to 

“just forget it,” insisted on staying to calculate the unit rates and prove that they were correct. 

I asked the students to reflect on their initial reaction to the problem and what they had learned. 

 

 “If I paid attention to what I knew instead of freaking out, I would have actually gotten the 

problem.” (Amy) 

 “It is quite simple when you calm down.”   (Gloria) 

 “I could have done this really quickly if I wasn’t freaking out.” (Mike) 

 

 Students reflected that the math was actually easy. One student commented that “it was 

just all the words mixed together” that made the problem difficult. They were glad they had not 

had to tackle it alone and commented that they needed the teacher’s help to understand the 

problem and help them find the parts they knew. However, when I asked them if they could im-

agine talking themselves through a problem like this on their own at some point, they agreed 

that with practice, they probably could use the coping and problem-solving strategies we had 

tried that day. 

 

Lessons Learned 
 This case provides insights into how self-awareness and problem solving may be taught. 

First, it describes a lesson that could be aligned with teachers’ content objectives at any point in 

a mathematics curriculum. The lesson could be introduced or revisited whenever students face a 

potentially intimidating problem-solving task. Teachers should choose the task carefully, find-

ing a problem that they suspect students will find intimidating but that will require skills most 

students possess and that will offer multiple entry points and solution paths. Within this context, 

the lesson described in this case is essentially a discursive frame including three steps: recog-

nizing and acknowledging emotional reactions, developing self-talk and coping strategies, and 

providing cognitive scaffolding during the problem-solving process.  

 

Acknowledging Emotional Reactions 
 It is essential to begin the lesson by asking students to describe their emotional reaction 

to the problem. Figure 1 provides some of the prompts that teachers could use to help students 

recognize their emotional reaction and its impact on how they approach (or avoid) the problem. 

 In my many years of teaching mathematics, I had never explicitly asked students how a 

problem made them feel. Prompting both groups— teachers and students—to examine their  
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in discussion-oriented classroom communities are sharing and listening. First, students must 

take responsibility for sharing the results of their explorations and for explaining and justifying 

their strategies. Second, students must realize that learning means learning from others, taking 

advantage of others’ ideas, and listening to the results of their classmates’ investigations 

(Hiebert et al., 1997). Thus, to become full participants in a community of peers doing mathe-

matics, students must be willing to share with and actively listen to one another. 

Research by Otten et al. (2011) suggested that when students actively listen to one another, 

mathematical reasoning can be made more explicit and more accessible. As a result, more stu-

dents can participate in the discussion by articulating mathematical thoughts and developing 

shared meanings. This type of community knowledge-building can cause students to compare 

and contrast their own mathematical thinking to that of their peers, change their own thinking, 

and come to new understandings (Kosko, 2012). The teacher plays an important role in helping 

students understand what counts as an acceptable explanation and justification in mathematics 

class (Yackel & Cobb, 1996) so that students’ efforts to listen to each other are not hampered 

by student talk that is unclear or imprecise. 

Concluding Thoughts 

 The fact that the rules of the IRE pattern, the defining characteristic of recitation, so 

heavily favor the power of the teacher is undoubtedly one reason why it has become such a pop-

ular style of teaching (Lemke, 1990). Teachers understandably may find it difficult to deviate 

from IRE because maintaining it offers many advantages to them, such as setting the topic, con-

trolling the pace, and steering the direction that the topic develops (Lemke, 1990). Thus, navi-

gating a new terrain of teaching can be challenging for teachers at any level, particularly be-

cause they may never have experienced, as a learner, an approach to teaching other than lecture 

or recitation (Marrongelle & Rasmussen, 2008). Some teachers have handled this challenge by 

believing they need to stop all “telling” (see, e.g., Chazan & Ball, 1999). Yet, the recitation ver-

sus discussion interaction patterns need not be dichotomous. Acknowledging that talk formats 

operate on a continuum, some researchers have pointed out that most classrooms operate some-

where between recitation and discussion (Herbel-Eisen- mann, 2001). Cazden (1988) contended 

that within a matter of moments, a lesson can move from recitation to discussion, and the activi-

ty that students are engaged in can determine the form of the lesson. As a general rule, however, 

any extreme version of the IRE-recitation sequence can be viewed as having the potential for 

closing down the discourse. In contrast, as teachers move away from recitation toward more 

purposeful discussions, there is a potential for opening up the discourse and shifting the mathe-

matical authority from teacher to community. 

 To be clear, it is not just getting students to talk more that matters. The orchestration of 

the discourse must be purposeful (Smith & Stein, 2011), and it must be academically productive 

“in that it supports the development of students’ reasoning and students’ abilities to express 

their thoughts clearly” (Chapin & O’Connor, 2007, p. 115). The field is just beginning to under-

stand and develop ways to support teachers  in  facilitating  productive  discussions  in  mathe-

matics class. More studies are needed that validate the effectiveness of some of the existing 

strategies available for orchestrating productive discussions. In addition, the field would benefit 

from studies that identify features of unproductive discussions that inhibit student learning. 
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emotional reaction to a problem provided space to discuss what we usually keep hidden. For the 

many students who reacted with anxiety, the discussion created a sense of safety in numbers as 

they heard similar sentiments from so many of their peers. 

 It was important to emphasize that feeling an emotional reaction to the problem was not 

wrong. Recognizing one’s feelings and learning to cope with them was the objective. Describ-

ing their emotions paved the way for students to try the coping strategies and self-talk described 

in the following section. 

 

 

 

 

 

 

Developing Self-Talk and Re-Engage Strategies 
 With both teachers and students, we brainstormed self-talk strategies after discussing 

their emotional reaction to the problem, both to relieve stress as well as to re-engage with the 

problem.  

 Prospective teachers in my class had  a wealth of such strategies, implying that they had 

considerable experience talking themselves through both their anxiety and the mathematics. 

Students’ repertoire of self-talk  was far less developed, a finding that speaks to the need to de-

velop students’ coping strategies in mathematics. When faced with a difficult mathematics 

problem, many students do not try to figure it out. They simply stop and wait for the teacher to 

tell them what to do. Figure 2 provides examples of the kinds of self-talk that students could 

use to calm themselves and re-engage with difficult problems. 

 It is important to have students brainstorm ideas first, chart them, and try them, giving 

credit to the students who generated the ideas. Ask students to think about a time when they ex-

perienced a problem outside of the context of math. How did they overcome it? What kinds of 

things did they say to themselves in the process?  These questions provide ways to start the con-

versation. If students are unable to suggest any coping strategies, it is important for the teacher 

to be ready with suggestions, thereby modeling self-talk both for reducing anxiety (take a deep 

breath, relax, take your time) and for re-engaging with the problem (reread it, find what you 

know, work step by step). 

 Alternatively, the teacher could use the preservice candidates’ emotional reactions and 

self-talk described in this article as a discussion starter for this segment of the lesson. In the les- 

son described above, reflecting with the students on prospective teachers’ emotional reactions 

to the problem and the self-talk that candidates generated moved the discussion forward. I be-

lieve that students felt that if successful college graduates—future teachers—were anxious 

when faced with a challenging math problem, then surely it was OK for them to “freak out.” As 

my middle-grades students shared the same anxiety as my teacher candidates, they were willing 

to try some of the same coping strategies. 

Figure 1:  These prompts promote students’ self-reflection. 

Recognizing Emotions and Their Impact 

1. How did this problem make you feel? 

2. What did you say to yourself when you first read this problem? 

3. How do our emotions and beliefs influence what we choose to do? 

Figure 2:  These self-talk strategies provide re-engagement entry points. 

Self-Talk and Coping Strategies 

1. Take a deep breath and relax. 

2. Take your time to re-engage. 

3. Reread the problem and find what you know. 

4. Take it one step at a time. 
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Providing Cognitive Scaffolding 
 Supportive scaffolding took place throughout the lesson. In the first two steps of the les-

son, the scaffolding that helped students recognize and cope with their anxiety cleared the way 

so that students could cognitively engage with the problem. In the third and final step, cognitive 

scaffolding helped them make sense of the problem and find places in the problem where their 

prior knowledge or experience could help them. I read the problem aloud. 

 We looked for words or scientific ideas (e.g., density) that at least some of the students 

knew. I gave positive specific feedback validating students’ knowledge. Only once did I pro-

vide clarification: I stepped in to help them link volume and mass to their measurements in cu-

bic centimeters and grams. 

 We discussed the picture of the ice- berg and searched for clues in the text. Students 

shared what they knew and pieced their understanding together like the parts of a puzzle. I did 

not, however, tell the students how to do the problem. I helped them become aware of their 

feelings (step 1), cope with those feelings and re-engage  (step 2), and persist in solving the 

problem (step 3) by making sense of it and piecing together what they already knew.  Figure 3 

identifies specific cognitive-scaffolding strategies that can be used to help students solve the 

problem themselves. 

 

 

 

 

 

 

 

 

 

 

 

The Value of Emotional Awareness 
 This case provides an instance of the intersection of mathematics and social-emotional 

learning skills. It demonstrates how self-awareness and problem solving interact when doing 

mathematics. It is a case that has changed my practice. I do not believe that I had ever before 

asked either adults or students how a mathematics problem made them feel. When I did, the 

range and depth of their emotions surprised me. As my students discussed their emotional reac-

tions, they learned that they were not alone in their feelings. 

 Helping students develop the skills to recognize and regulate their emotional reaction set 

the stage for re-engaging with the problem and making sense of it. The discussion gave students 

the coping skills necessary to persist. Sense-making and persistence are foundational mathemat-

ical practices. Emotional awareness and regulation helped students engage in these practices. 

This lesson was time well spent. Self-awareness and problem solving are essential not only for 

mathematics but also for life. 

 

 

Figure 3:  These cognitive-scaffolding strategies will promote moving toward  a  solution.  

Cognitive Scaffolding 

1.  Assist struggling readers by reading the problem aloud. 

2.  Help students use context clues in the text and pictures to make sense  of  the  problem.  

3.  Provide positive specific feed-back validating both students’ knowledge and their use of self- talk or 

coping strategies. 

4.  Honor incremental advances in solving the problem and multiple  solution  paths. 

5.  Do not tell students how to do the problem; validate their effective strategies. 
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“Knowledge is built. Understanding grows. Relationships with mathematics and with classroom 

community members develop” (Middleton & Jansen, 2011, p. 164). 

 The case of Railside High School also offers evidence that students’ motivation to learn 

mathematics can be positively impacted by participating in discussion-focused classrooms. The 

results of questionnaires given to students showed that each year the Railside students were sig-

nificantly more positive about their mathematics experiences than their peers in more traditional 

classes. For example, 71% of Railside students in Year 2 classes (n = 198), reported “enjoying 

math class,” while only 46% of students in the more traditional classes (n = 318) agreed to this 

statement (Boaler & Staples, 2008). By their senior year, 41% of Railside students were in ad-

vanced classes of precalculus and calculus, compared to only 23% of students coming from the 

more traditional class- es (Boaler, 2008). 

Discussion Can Support Teachers in Understanding and Assessing Student Thinking 

 Some classroom interaction patterns promote deeper mathematical thinking than others 

(Herbel-Eisenmann & Breyfogle, 2005; Martens, 1999), and skillful questioning of student 

thinking can provide the teacher with valuable knowledge about students’ developing mathe-

matical ideas (Martino & Maher, 1999). NCTM’s (2000) Teaching Principle begins with the 

following claim: “Effective mathematics teaching requires understanding what students know 

and need to learn and then challenging and supporting them to learn it well” (p. 16). Discussion 

is a strategy that can support teachers in understanding what students already know and in de-

termining what they still need to learn. In this sense, listening to students’ ideas in discussions 

can serve as formative assessment that helps teachers make decisions about instruction. To 

maximize the instructional value of discussion using formative assessment, “teachers need to 

move beyond a superficial ‘right or wrong’ analysis of tasks to a focus on how students are 

thinking about the tasks” (NCTM, 2000, p. 24). Rather than concentrating solely on misconcep-

tions or errors, teachers should make efforts to identify valuable student insights on which fur-

ther progress can be based (NCTM, 2000). Emphasizing tasks that focus on reasoning and sense

-making and providing students with opportunities to discuss mathematics serves to afford 

teachers with ongoing assessment information. Teachers must then guide the students toward 

new understandings and support their development as they work to communicate mathematical-

ly. 

 A key component of formative assessment is feedback. When students routinely take 

part in discourse in which meanings are developed and shared, they are provided with feedback 

that supports them to move their learning forward (Lee, 2006). In particular, feedback allows 

students to compare how their thinking correlates with that of other students in the class as well 

as the conventional mathematical ideas. It also allows students opportunities to reconsider and 

revise their thinking from the early “first draft” stage to a more re- fined “final” version 

(Choppin, 2007). A discussion-rich learning environment can provide students with agency 

over their own learning. 

Discussion Can Shift the Mathematical Authority to Community 

When teachers shape the discourse by opening it up through discussion, there is real potential to 

shift the mathematical authority from teacher (or textbook) to community (Webel, 2010). For 

this shift to truly be realized, however, the students must be aware of and willing to take on 

roles that differ from their roles in recitation sequences. More specifically, for discussions to be 

productive, students must “share the responsibility for developing a community of learners in 

which they participate” (Hiebert et al., 1997, p. 16). Two important aspects of the students’ role 
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an urban school in California, the focus of the approach to teaching mathematics was 

“communicative,” meaning that “the students learned about the different ways that mathematics 

could be communicated through words, diagrams, tables, symbols, objects, and 

graphs” (Boaler, 2008, p. 59). As they worked on algebra and geometry tasks in heterogeneous 

classes, the students would frequently be asked to explain their work to each other. In fact, 

teachers lectured only about 4% of the time. Approximately 72% of the time, students worked 

in groups while the teachers circulated around their rooms showing methods to students, help-

ing students, and asking them questions about their work. Students presented their work about 

9% of the time, and they were questioned by the teacher in a whole-class format about 9% of 

the time (Boaler & Staples, 2008). As part of the research project, the achievement of Railside 

students was compared to that of similar-size groups of students being taught through more tra-

ditional approaches in two other high schools. In these classes, students did not typically dis-

cuss mathematics, but rather watched the teacher demonstrate procedures and then worked 

through textbook exercises. At the beginning of the year, the two suburban schools using the 

more traditional approach started with higher mathematics achievement levels than the students 

at Railside, but by the end of the first year of the study the students at Railside were achieving 

at the same level in algebra as the students in the suburban schools. By the end of the second 

year, the Railside students were outperforming the other students on algebra and geometry tests 

(Boaler, 2008). 

 One more piece of evidence to support the idea that dis- cussing mathematics can lead to 

increased student learning comes from a study focused on students’ perspectives. In Listening 

to My Students’ Thoughts on Mathematics Education, mathematics teacher Joseph Obrycki 

(2009) described the results of his action research project in which he analyzed six interviews of 

students in his high school geometry course. The interviews were conducted for Obrycki by a 

university researcher after he participated in three years of professional development focused on 

classroom discourse. Obrycki’s students noted again and again that his teaching style was dif-

ferent from their past mathematics instructors (who told them about mathematical ideas) be-

cause he expected them to think and “figure stuff out” themselves. Some students noted an ini-

tial frustration with this approach, but eventually all students interviewed concluded that work-

ing in groups to prove theorems and solve problems was in their best interest in terms of their 

learning. All six students agreed that it was possible to generate mathematical knowledge on 

their own, with many noting that this was the best way to learn. When asked at the conclusion 

of the interview if there was anything she would like to share with other mathematics educators, 

one student noted: “I don’t know if the answer should be withheld all the time, but letting stu-

dents get to the answer and not just presenting it to them is definitely worthwhile, even if it 

takes longer” (Obrycki, 2009, p. 201). When students begin to recognize that participating in 

mathematics discussions helps them to learn mathematics, their motivation to participate may 

be increased. 

Discussion Can Motivate Students 

In Motivation Matters and Interest Counts, Middleton and Jansen (2011) suggested that teachers 

should make efforts to involve their students in class by convincing them that many types of 

contributions will help advance the class’s knowledge (e.g., questions, alternative solutions, 

false starts, conjectures). When teachers do this, they argued, more students feel comfortable 

and courageous enough to contribute to classroom discussions. Active participation in a collab-

orative mathematics classroom, therefore, can have a positive impact on student motivation:  
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Abstract 

 Mathematics scores are stagnating at the eighth grade level in the United States, re-

vealing that student performance is not improving at the national and international levels. 

Changes in mathematics instructional practices are necessary to engage students and 

demonstrate the relevancy and application of mathematics beyond the classroom.  Howard 

Gardner’s theory of Multiple Intelligences may provide one direction for instruction and 

assessment to jump-start mathematics achievement and help students develop greater inter-

est in and motivation toward the subject. 

Introduction 

 There is a growing trend in the United States of students who graduate from high 

school hating math or, if not hating it, seeing no application of it beyond the classroom.  

This mindset can continue through college, with many students taking only the required 

math for their lower division general requirements, or taking the required courses in high 

school to avoid taking math at all as part of their collegiate degree.  This mindset does not 

spontaneously occur in students.  For secondary educators, the eighth grade year appears to 

be of most concern as eighth grade mathematics test scores in the United States have stag-

nated in the past several years (National Center for Educational Statistics, 2011b).  This is 

concerning because eighth grade is a critical year, often predicting students’ achievement 

and trajectories as they continue on to high school, where grades begin to affect the out-

come of where they will end up after graduation.  For students who graduate from eighth 

grade not understanding math, high school math and college math become next to impossi-

ble.   

 Therefore, we must evaluate how mathematics is taught. In an age of unparalleled 

diversity and with a student body with an incomparable desire for relevance, mathematics 

instruction cannot remain as mainly lecture with carefully contextualized application prob-

lems that only require the student to apply one specific skill.  Rather, mathematics instruc-

tion must be designed in such a way that application is relevant and significant to students, 

showing not only how math happens in the real world, but how it can be uniquely applied 

in the situation of every student. Additionally, we must recognize the diversity of students 

in our classrooms and design instruction that better reaches all learners. 

The Problem 

 Students see little application for higher-level mathematics in their future careers 

and, therefore, many students are unmotivated to pursue mathematics education. Yet math-

ematics plays a significant role in whether or not a student goes to college.  It is reported 

that the current instructional approach taken in middle school math “denies some students  
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 Here, Ms. D seemed genuinely curious about how students were making sense of the 

problem. She was interested in learning about the range of solutions, and she allowed mis- 

conceptions to surface. Although the teacher was orchestrating the discourse, students were 

encouraged to speak with one another in the discussion. Ms. D also provided students with 

opportunities to use mathematically precise language and to engage with the reasoning of 

their classmates. Attending to precision by communicating precisely to others and construct-

ing viable arguments and critiquing the reasoning of others are two practices that are promot-

ed in the Common Core State Standards. These practices are based on the belief that students 

learn and come to understand mathematics by working to justify why a mathematical state-

ment is true or where a rule comes from (NGA Center and CCSSO, 2010). In the sections 

that follow, some benefits of discussion are described. 

Discussion Can Increase Student Learning 

 The classroom culture, the ways in which students and teachers interact, the kinds of 

learning experiences students have, and the tasks that students are asked to engage with all great-

ly influence the opportunities that students have to learn mathematics in any given classroom 

(Hiebert et al., 1997). We learn through social interaction (Lave & Wenger, 1991; Vygotsky, 

1978). A Vygotskian viewpoint, as articulated by Gibbons (2006), suggests that language use is 

at the root of learning. More specifically, this view of language calls for any examination of 

teaching and learning to treat interactions between teacher and learner as crucial. These interac-

tions not only shape students’ talk, but they help to construct understanding (Gibbons, 2006). 

Discussions can take place in small groups or as a whole class. When viewing a classroom as a 

community of learners, it must be remembered that interacting is not optional, but rather it is es-

sential because communication is necessary for building understanding (Hiebert et al., 1996). In 

the remainder of this section, three studies which support the idea that discussion-based class-

rooms can increase student learning are summarized. 

 The results of Project Challenge offer compelling evidence that shifting to a discussion-

based teaching format positively impacts student learning. In their work with Project Challenge, 

Chapin, O’Connor, and Anderson (2003) put a great deal of emphasis on students talking with 

one another and with the teacher in particular ways that have been found to be academically pro-

ductive. The work of Project Challenge took place over four years in a low-income Boston 

school district and involved about 400 students and 18 teachers in grades 4–7. The majority of 

these students (65%) were English Language Learners, and most students (78%) qualified for 

free and reduced lunch. Using Standards-based curricula, daily logic-problem warm-ups, and 

weekly quizzes, these classrooms “emphasized communication by supporting discussions, both 

lengthy and brief, and by maintaining a constant focus on explanations for students’ reason-

ing” (Chapin & O’Connor, 2007, p. 114). Results on the California Achievement Test (CAT) 

were used as a measure of student learning. After about three years of the study, the class mean 

of the Project Challenge students reached the 90th percentile. Project Challenge students also 

scored better as a whole than students in one of the most highly ranked cities in the state of 

Massachusetts (see Chapin & O’Connor, 2004; 2007 for more details). These results provide 

strong evidence that student learning is greatly supported by engagement in academically pro-

ductive talk (Chapin & O’Connor, 2007).  

 The case of Railside also suggests that students learn more in classrooms that provide 

them with opportunities to learn mathematics through discussion. At Railside High School,  
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Ms. R: Good, two. And what were those two points? 

Jamie: One, six and, um, six, eleven. 

Ms. R: Good. The intersection points are one, six and six, eleven. Let’s look at another one. 

 In this recitation sequence, Ms. R seemed to be looking for correct answers. She did not 

appear to be focused on understanding her students’ thinking or providing opportunities to dis-

cuss strategies using mathematical language. One of the most striking features of a typical reci-

tation sequence is that the teacher tends to be the only one asking questions, as seen above. 

Thus, recitation could foster the impression that students must participate in accordance with 

the pattern established by the teacher—namely, students speak only when invited to respond to 

their teachers’ questions. 

 Discussion provides an alternative to recitation. Within discussions, assessing students’ 

subject-matter knowledge is not necessarily the primary and sole objective. In addition, teachers 

are interested in helping their students to develop understandings. In the example below, Ms. D 

works on the same problem as Ms. R, but this time through a discussion rather than a recitation. 
Ms. D: Okay, let’s talk about the next problem. You were asked to figure out something about the 

points of intersection of the parabola and the line. What did people come up with? 

Jen: We said there was one point. 

Juan: My group got two. 

Maria: Yeah, we got two too. 

Ms. D: All right then, let’s take a look at this. I’m hearing that some groups found that there was one 

point of intersection and others thought that there were two. Let’s hear from Maria’s group 

first. Maria, can you describe your strategy? 

Maria: Well, we just graphed the parabola and the line, and then we found that they intersected at one, 

six and at six, eleven. 

Ms. D: You graphed it how? 

Maria: We used our graphing calculator. At first we thought that there was one point too, and then we 

had to change the screen and we found the second point. 

Ms. D: Does anyone have questions for Maria? 

Jen: What do you mean you changed your screen? Because we graphed ours too. 

Maria: We had to change the numbers so we could see the graph bigger. Then we saw the two points 

when we changed to bigger numbers. 

Ms. D: Does anyone understand what Maria is saying about seeing the graph bigger and changing to 

bigger numbers? Can anyone else restate what Maria said using some of the terminology that we 

discussed yesterday? Grady? 

Grady: Yeah, I think she’s saying that she changed her viewing window. She probably had to change the y-

values so she could see the graph higher. That’s what we did because if you just use the normal win-

dow then you can only see one point. But we knew there had to be two points because we talk- ed 

about how if there’s only one point, it goes along the side of the graph. 

Ms. D: Okay, so I think what you’re saying at the end is that if there was only one point of intersection, it 

would have to be a tangent line, tangent to the parabola. [Ms. D draws a diagram on the board.] Is that 

what you’re saying, Grady? 

Grady: Yeah. 

Ms. D: Jen’s group—did what Maria and Grady said make sense? 

 
 Jen’s 

group: Yeah. 
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access to higher mathematics” (Center for the Study of Mathematical Curriculum, 2004, p. 5) 

implying that for some students, middle school mathematics does not provide a lasting applica-

tion nor instill the need for higher mathematics once that student reaches higher education.   

Mathematics scores are not improving at the middle school level, leading to students not pursu-

ing higher mathematics in high school and college, yet students need to use mathematical prob-

lem solving skills throughout their lives.  A new approach to mathematics instruction is needed 

to create relevancy, interest, and an environment for success, with the goal of encouraging stu-

dents to pursue higher-level mathematics courses in high school and college.  

 Using Gardner’s Multiple Intelligences (MI) theory as a guide, mathematics can become 

not only more engaging, but relevant and applicable to students as well.  This has to start at the 

instructional design level by developing methods for “mobilizing the Multiple Intelligences to 

achieve specific pedagogical goals” (Gardner, 2011, p. xxi) in the mathematics classroom.  An 

instructional foundation in Multiple Intelligences can bring mathematics to life. Additionally, 

using the Multiple Intelligences as a framework for instruction can help math educators to reach 

the diversity of learners in our classes.  

 

Mathematics Achievement in the United States 

 In The Nation’s Report Card, a document “[informing] the public about the academic 

achievement of elementary and secondary students in the United States” (National Center for 

Educational Statistics, 2011a, p. 0), findings about mathematical achievement across 

the fourth and eighth grade years were published.  The results of the report card “are based on 

nationally representative samples of 209,000 fourth-graders from 8,500 schools, and 175,200 

eight-graders from 7,610 schools” (NCES, 2011a, p. 6).  Students’ performance was measured 

at these grade levels in the following areas: number properties and operations, measurement, 

geometry, data analysis, statistics/probability, and algebra.    Furthermore, the distribution of 

each of the five categories was also presented in different percentage allotments between the 

grades based on mathematical learning that occurs at each grade level. Table 1 shows how the 

test was weighted according to content matter. 

 

Table 1. Target percentage distribution of NAEP mathematics questions, by grade and content 

area: 2011  

 
(NCES, 2011a, p. 6).   

  

As shown, the fourth grade assessment focuses on the students’ ability to work with number 

properties and operations while the eighth grade assessment places stronger emphasis on Alge-

bra and other higher-order processes.   

 

Content Area 4th  Grade 8th Grade 

Number properties and operations 40 % 20 % 

Measurement 20 % 15 % 

Geometry 15 % 20 % 

Data analysis, statistics, and probability 10 % 15 % 

Algebra 15 % 30 % 
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 The Nation’s Report Card shows the scores of eighth graders going up by one point 

overall from 2009 to 2011. However, an examination of each of the states’ scores reveals that in 

36 states there were no significant changes in the math scores of 8th grade students during this 

period (NCES, 2011a, p. 47).  This trend suggests that there is stagnation in eighth grade math 

scores in most of the United States.   

 Furthermore, the National Center for Educational Statistics, part of the US Department 

of Education, also conducted the Trends in Mathematical and Science Study (TIMSS), most re-

cently in 2011, to examine US mathematics achievement compared to other countries.  The 

mean score on the TIMSS is 500.  This study found that “[t]here was no measureable difference 

between the US average mathematics score at grade 8 in 2007 (508) and in 2011 (509),” reveal-

ing that US eighth grade scores have been stagnant since 2007.  In looking at the international 

benchmarks presented in the TIMSS, among US eighth graders, only seven percent reached the 

advanced international benchmark- which is a score of 625 (National Center for Educational 

Statistics, 2011b).    

 The scores presented in the Nation’s Report Card and TIMSS, show that eighth grade 

achievement in mathematics in the US is not improving.  Yet eighth grade is a critical year in 

determining whether or not students continue in higher-level mathematics in high school and 

college.  Richard Riley, former US Secretary of Education, in the Executive Summary of Mathe-

matics Equals Opportunity, stated:   

 The eighth grade is a critical point in mathematics education. Achievement at that stage 

 clears the way for students to take rigorous high school mathematics and science  cours

 es—keys to college entrance and success in the labor force. However, most eighth and 

 ninth graders lag so far behind in their course taking that getting on the road to  col

 lege is a long way off (Riley, 1998). 

This situation creates a dilemma, not just for students and teachers, but the country at large.  If 

students are not striving for higher mathematics because they decided in eighth grade that math 

was “too hard” or “too boring” or not applicable now or for their future ambitions, then empha-

sis must be placed on improving mathematics instruction and learning to foster an interest in 

mathematics at that level.   

 The report from Riley also indicated that, “Making a successful transition from arithme-

tic to more advanced mathematics, including algebra and geometry, has often been difficult for 

students” (Riley, 1998).  This is, perhaps, based in part on the past curricular practices of the 

US education system, in which algebraic and geometric ideas have not typically been presented 

in full until upper grades, making the content new for students at a time when they are still 

struggling to move from concrete to abstract conceptualizations cognitively.  Students in the 

middle school years are generally functioning in the concrete-operational stage of cognitive de-

velopment according to Jean Piaget’s theory, meaning that they typically use “hands-on think-

ing” and require concrete examples that are often experienced rather than visualized and con-

ceptualized abstractly (Woolfolk, 2011, p. 49).    

 There are also critical implications for the outlook of scores in mathematics and stu-

dents’ ability to succeed in and pursue higher education in general.  For instance, Riley report-

ed:  

 Data from the National Educational Longitudinal Study (NELS) reveal that 83 percent 

 of students who took algebra I and geometry went on to college within two years of 

 their scheduled high school graduation. Only 36 percent of students who did not take  
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 Introducing  new  material  in  mathematics  class  in  the United States has typical-

ly been done through teacher presentations of a few sample problems followed by demon-

strations of how to solve them. The step-by-step demonstrations are often carried out by 

asking short-answer questions of students along the way (Stigler & Hiebert, 1999). Over 

the last 20 years, however, mathematics educators have observed and analyzed alternatives 

to recitation, the questioning pattern described above. In particular, a growing body of liter-

ature supports the use of discussion in mathematics class. In this brief, after describing and 

providing examples of recitation and discussion, some benefits of discussion in mathemat-

ics class will be presented. These recommendations are based on published studies that 

suggest that discussion is a productive alternative to other more passive talk formats. In 

short, discussion can: 

 

 Increase student learning 

 Motivate students 

 Support teachers in understanding and assessing student thinking 

 Shift the mathematical authority from teacher (or textbook) to community 

 

Recitation versus Discussion 

 In Classroom Discourse, Cazden (2001) made the following observation: The three

-part sequence of teacher Initiation, student Response, and teacher Evaluation (IRE) is the 

most common pattern of classroom discourse at all grade levels. The IRE interaction pat-

tern repeats itself throughout a recitation-type lesson. In their succinct summary of implicit 

rules, Edwards and Mercer (1987) noted: (a) It is the teacher who asks the questions; (b) 

The teacher knows the answers; and (c) Repeated questions imply wrong answers (p. 45). 

Below is an example of a recitation sequence contained in a lesson in which Ms. R is work-

ing with students on the problem of finding the points of intersection of a line and a parab-

ola: 

 
Ms. R: Let’s look at the third problem. How many points of intersection did you come up with? 

Chris? 

Chris: One. 

Ms. R: One? Jamie? 

Jamie: Uh, two. 

 

(This article is reprinted with the permission from the National Council of Teachers of Math-

ematics.  This article appears in the Discussion Research Brief, 2013) 
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 algebra I and geometry courses went to college (1998). 

Riley also indicated that higher percentages of students from low and middle income families 

that took these math courses went to college than those in similar circumstances who did not 

take these math classes (1998).  These figures communicate a need for improved mathematics 

education as students who feel competent in the subject areas of algebra and geometry are more 

likely to pursue higher education at the collegiate level, yet national testing reveals students are 

not improving on mathematics tests, particularly in these advanced areas.   

Traditional Pedagogies in Mathematics 

 While the scores show little advancement in mathematical achievement, rigor of the 

content is not the only factor in determining whether students fail or succeed.  Instructional ap-

proach also plays a key role in learning outcomes.  The National Council of Teachers of Mathe-

matics (NCTM) advocates for new focus in mathematics instruction in which students are en-

couraged to wrestle with problems rather than simply use rote memorization of formulas to 

compute answers.  The NCTM has argued for changing instruction to allow students to problem 

solve and see application for mathematics in a relevant context.  Students at the middle school 

level also function at a cognitive level in which hands on activities in multiple instructional ap-

proaches results in greater understanding and achievement (Center for the Study of Mathemat-

ics Curriculum, 2004,p. 6).   The promotion of these changes suggests that the current practices 

of mathematics teaching are largely lectured-based, where students memorize formulas to apply 

in specific situations, not allowing students to see the broader applications beyond the assigned 

problem sets.  The predominance of lecture-based instruction is also challenging for many stu-

dents who have difficulty learning from this format. The implication is that mathematics in-

struction cannot be “thirty minutes… spent reviewing the previous day’s lesson, ten minutes… 

teaching new material, and the last five minutes on the students’ working the prob-

lems” (Martin,1996, p.1).  Instead, mathematics instruction should be delivered in a variety of 

formats, encompass a breadth of problems found in life, and provide ways for diverse students 

to rely on mathematics principles to uniquely approach problem solving. Howard Gardner’s 

Theory of Multiple Intelligences is one framework that can help teachers think about structuring 

mathematics instruction to meet these needs. 

Gardner’s Theory of Multiple Intelligences  

 While there are many ways in which intelligence can be viewed and defined, Harvard 

psychologist Howard Gardner’s Theory of Multiple Intelligences (MI) views intelligence in a 

multifaceted sphere, in which each human being contains not just one realm of intellectual ca-

pacity, or general intelligence, but, rather, a conglomeration of intelligences that serve an indi-

vidual in context.  

 Gardner established that in order for something to be defined as an intelligence it had to 

enable “the individual to resolve genuine problems or difficulties” and furthermore “entail the 

potential for finding or creating problems—thereby laying the groundwork for the acquisition 

of new knowledge” all while proving to be “of some importance within a cultural con-

text” (Gardner, 2011, p. 64-65). Simply put, intelligences are “semi-independent ways of 

‘solving problems and fashioning products’” (Wahl, 1999, p. 2).  In this respect intelligence 

must be useful for solving the myriad of problems that individuals encounter within their realm 

of development and culturally associated reality and create a relevant solution within that per-

spective and environment. 

 Based on these criteria, Gardner initially presented the following seven Multiple  
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Intelligences: linguistic intelligence, musical intelligence, logical-mathematical intelligence, 

spatial intelligence, bodily-kinesthetic intelligence, and the personal intelligences (interpersonal 

and intrapersonal).  Gardner added an eighth intelligence to his list in 1996, the naturalistic in-

telligence (Campbell, 1997), with a ninth, existential intelligence, added recently.  

 There are four key points to consider in MI Theory: “each person possesses all [nine] 

intelligences, most people can develop each intelligence to an adequate level of competency, 

intelligences usually work together in complex ways, and there are many ways to be intelligent 

within each category” (Armstrong, 1994, p. 11-12). With this in mind, a closer look at the mul-

tiple intelligences shows the expanse of knowledge these intelligences cover in the human 

sphere of thought, with particular attention to their application in mathematics: 

 Linguistic intelligence: “Sensitivity to the sounds, structure, meanings, and functions of 

words an language” (Armstrong 1994, p. 6).  This intelligence type would be inclined toward 

writing down steps or discussing how to achieve a solution, with emphasis being placed on con-

veying mathematical meaning through the use of verbal or written communication.  

 Musical intelligence: “Ability to produce and appreciate rhythm, pitch, and timbre; ap-

preciation of the forms of musical expressiveness” (Armstrong 1994, p. 6). Rhymes and chants 

can be used by students with this intelligence type to remember formulas like the quadratic 

equation, or to walk through how to solve for outliers in data sets.  

 Logical-mathematical intelligence: “Sensitivity to, and capacity to discern, logical or 

numerical patterns; ability to handle long chains of reasoning” (Armstrong 1994, p. 6).  This is 

generally how mathematics is taught.  Students generally can reason through answers, quickly 

see where ideas are going through inductive or deductive reasoning.  

 Spatial intelligence: “Capacity to perceive the visual-spatial world accurately and to per-

form transformations on one’s initial perceptions” (Armstrong 1994, p. 6).  Students with this 

intelligence type generally draw things out, and rely on diagrams and models to reason and con-

vey mathematical meaning. 

 Bodily-kinesthetic intelligence: “Ability to control one’s body movements and to handle 

objects skillfully” (Armstrong 1994, p. 6).  This intelligence lends itself well to using mathe-

matical instruments, such as rulers, compass, and protractor to create the movements required to 

solve and reason until a solution is found.  Student may also turn their paper upside down, stand 

up to view something from a different angle, or use their bodies to consider ideas such as angle 

and length.  

 Interpersonal intelligence: “Capacity to discern and respond appropriately to the moods, 

temperaments, motivations, and desires of other people” (Armstrong 1994, p. 6).  Students of 

this intelligence type will work well with groups to problem solve.  They will ask questions to 

get the group thinking or to clarify misunderstandings.  They may rely on the teacher and peers 

to help them reason or to find validation in their ideas.  

 Intrapersonal intelligence: “Access to one’s own feeling life and the ability to discrimi-

nate among one’s own emotions; knowledge of one’s own strengths and weakness-

es” (Armstrong 1994, p. 6).  Students with strong intrapersonal intelligence may like working 

alone to problem solve, they might reread notes, look at examples, find possible contradictions 

and know where they are getting stuck to then search out individual understanding to come to 

an answer.  

 Naturalistic intelligence: “Expertise in distinguishing among members of a species; rec-

ognizing the existence of other neighboring species; and charting out the relations, formally, or 
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UCTM Recommended Book 
   

 By Mary Kay Stein, Margaret Schwan Smith 

 

 Five Practices for Orchestrating 

 Productive Mathematics  

 Discussions  

 In this book, we present and discuss a framework for orchestrating mathematically productive discussions 

that are rooted in student thinking. The framework identifies a set of instructional practices that will help teachers 

achieve high-demand learning objectives by using student work as the launching point for discussions in which 

important mathematical ideas are brought to the surface, contradictions are exposed, and understandings are devel-

oped or consolidated. The premise underlying the book is that the identification and use of a codified set of practic-

es can make student-centered approaches to mathematics instruction accessible to and manageable for more teach-

ers. By giving teachers a road map of things that they can do in advance and during whole-class discussions, these 

practices have the potential for helping teachers to more effectively orchestrate discussions that are responsive to 

both students and the discipline. 

 Throughout the book, we illustrate the practices in real classrooms with which we have become acquaint-

ed through research or professional practice (e.g., through teachers with whom we have worked in professional 

development initiatives). In particular, we make significant use of two classroom lessons: the Case of Darcy Dunn 

and the Case of Nick Bannister. The Case of Darcy Dunn is introduced in chapter 3 as a vehicle for investigating 

the five practices in action, and it is revisited in subsequent chapters as the practices are explored more fully. The 

Case of Nick Bannister is explored in considerable depth in chapters 4 and 5 as each of the five practices is exam-

ined in detail, and then it is referred to again in subsequent chapters as broader issues are considered. 

 Following research that has established the importance of learners’ construction of their own knowledge 

(Bransford, Brown, and Cocking 2000), we have designed this book to encourage the active engagement  of read-

ers. In several places, we have provided notes (titled “Active Engagement”) that suggest ways in which the reader 

can engage with specific artifacts of classroom practice (e.g., narrative cases of classroom instruction, transcripts 

of classroom interactions, instructional tasks, samples of student work). Rather  than passively read the book from 

cover to cover, readers are encouraged to take our suggestions to heart and pause for a moment to grapple with the 

information in the ways suggested. By actively processing the information, readers’ understandings will be deep-

ened, as will their ability to access and use the knowledge flexibly in their own professional life. In addition, at the 

end of chapters 4, 5, 6, and 7, we have provided suggestions (titled “Try This!”) regarding how a teacher can ex-

plore the ideas from the chapter in their own classrooms. 

 Although the primary focus of the book is the five practices model (chapters 1, 3, 4, and 5), it also ex-

plores other issues that support teachers’ ability to orchestrate productive classroom discussions.  Specifically, 

chapter 2 emphasizes the need to set clear goals for what students will learn as a result of instruction and to identi-

fy a mathematical task that is consistent with those learning goals prior to engaging in the five practices. Chapter 6 

focuses explicitly on the types of questions that teachers can ask to challenge students’ thinking and the moves that 

teachers can make to promote the participation of students  in whole-class discussions. Chapter 7 situates the five 

practices model for facilitating a discussion within the broader context of preparing for a lesson and introduces a 

tool for comprehensive lesson planning in which the five practices are embedded. The book concludes with chapter 

8, which discusses ways in which teachers can work with colleagues, coaches, and school leaders to ensure that 

they have the time, materials, and access to expertise that they need to learn to orchestrate productive discussions. 
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informally, among several species” (Armstrong, 2009, p. 11).  Students with naturalistic intelli-

gence may see similarities in different mathematics concepts and ask questions to create the 

connections to group mathematics into similar idea families.  

 Existential intelligence: “the ability and proclivity to pose (and ponder) questions about 

life, death, and ultimate realities” (Howard Gardner’s Multiple Intelligence Theory, n.d.).  For 

students, this intelligence considers the broader applications of math to other areas and a con-

sideration for essential questions that are posed at the beginning of a math unit.  

The Multiple Intelligences in Teaching and Learning 

 Gardner expressed the value of his theory for education, stating that, “Only if we expand 

and reformulate our view of what counts as human intellect will we be able to devise more ap-

propriate ways of assessing it and more effective ways of educating it” (2011, p. 4).  If educa-

tors accept this multifaceted view of intelligence, we then must adopt methods for teaching to 

an audience of learners that express a variety of approaches to learning. There is a connection 

between a student’s intelligence and how a student uses those intelligences to actually learn and 

achieve academically.  More specifically, the multiple intelligences can be used to help students 

learn and achieve mathematically.  The development of favored intelligences begins early. For 

instance, while a student may have ability in all nine intelligences, over time, certain intelli-

gences are favored, or relied on more, whether through instinct, personal inclination, or cultural 

influence.  Thomas Armstrong, a scholar of Multiple Intelligences, submits that, “[C]hildren 

seem to begin showing what Howard Gardner calls ‘proclivities’ (or inclinations) in specific 

intelligences from a very early age. By the time children begin school, they have probably es-

tablished ways of learning that run more along the lines of some intelligences than oth-

ers” (1994, p. 26).   Therefore, it can be assumed that if children develop learning preferences 

geared toward certain favored intelligences during their early education, then, by the eighth 

grade, students have already begun solidifying their approaches to learning with regards to fa-

vored intelligences depending on their experiences both in and out of the classroom.  Gardner 

relates, “Authorities generally agree that, outside of schooled settings, children acquire skills 

through observation and participation in the contexts in which these skills are customarily in-

voked.  In contrast, in the standard classroom, teacher talk, often presenting material in abstract 

symbolic form and relying on inanimate media such as books and diagrams in order to convey 

information” (Gardner, 2011, p. 374).   Seeing the stark contrast of out of class and in class 

learning as a result of the disparity between real world and in class teaching, the need for a bal-

ance between the two can be found in using the Multiple Intelligences.   

 In education, too often teachers resort to lecture because it is easier to do and there are 

far too many demands on teachers’ time and resources. But to “be successful in educating all of 

our students, we need to be aware of their individual learning styles and multiple intelligenc-

es” (Snyder, 2000, p. 12).   While it may seem daunting to try to teach to a classroom full of 

students that each have a unique set of learning styles and Multiple Intelligences, it is possible 

to create lesson plans that cater to different intelligences and allow for student expression of 

their intellectual profiles without having to create a different instructional model for each stu-

dent in the class.   

 If educators embrace Gardner’s theory as a framework for reaching the diverse learners 

in their classrooms, they must be prepared to act not only to include the theory into instruction, 

but also into assessment.  The theory can be implemented into instruction by teaching a concept 

with access to each, or at least some, of the Multiple Intelligences, or by having students work  
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on activities where the structure of the activities is framed around the intelligences that students 

will need to rely on to solve the problem/scenario. If we change the instructional format from 

lecture-based to that of a Multiple Intelligences approach, then assessment must reflect the in-

structional practice and bring in the Multiple Intelligences in its design and execution to achieve 

alignment and continuity for learners.  

Applications in Math 

 Knowing the value of Multiple Intelligences as an approach to instruction and assess-

ment, the question then becomes how do we implement the intelligences in a mathematics class 

and still meet the state and national standards as well as specific pedagogical goals that have 

been developed in an educator’s teaching philosophy?  Martin submits that, “If we wish to ex-

pand the mathematical horizons of our students, we must examine Gardner’s theories and see 

how they can be incorporated into the teaching and learning of mathematics” (Martin, 1996, p. 

4).   This requires a teacher to reexamine the approach that is taken with regards to instruction 

and assessment to allow for the multiple intelligences to be built into and around the content, 

learning processes, and assessments that students experience to learn mathematics. Through the 

use of Multiple Intelligences, students experience the applicability to the real world as they 

work through problems using the intelligences they will use in other real world situations.  

 Martin asks, “How often have we heard in the math classroom, ‘When are we ever go-

ing to use this?’ This question is asked because, all too often, skills are isolated from their appli-

cations in the ‘world’ (Martin, 1996, p. 8). Through Multiple Intelligence, students can build 

skills based on their preferred intelligences, as well as gain experienced with their weaker intel-

ligences, and they develop a sense of relevancy for mathematics in their lives.  Unique problem 

solving using the Multiple Intelligences in a math class facilitates applying mathematics skills 

to real life because students are allowed to explore mathematics from various view points.  

They practice problem solving with different intelligences or experience the construction of 

mathematics through a Multiple Intelligences perspective and approach and this then translates 

to real life situation where students will need to be able to approach problems in a myriad of 

ways to create unique and notable solutions.  

 Assessment in mathematics is also an integral part of the learning process.  In general, 

mathematics assessment relies heavily on multiple choice and paper-pencil testing to assess a 

student’s aptitude in different skills and concepts.  “Traditionally, assessment of students’ learn-

ing in math has had a narrow focus and vision. The focus has been on paper-and-pencil tests; 

the vision has been to give the students a grade” (Martin, 1996, p. 10).  Martin also stated that, 

“If we change what we teach in mathematics and the way we teach it, can we maintain tradi-

tional methods of assessment?” (1996, p. 9).  The answer is no.  We cannot expect to teach dif-

ferently and test the same and arrive at improved results.  If the aim is to use multiple intelli-

gences to improve mathematics teaching and learning, then assessment must change to meet 

that demand and expectation.  “Assessment of students should allow for their unique modes of 

learning and should enable them to present their knowledge in their own style.  Assessment 

should provide opportunities for learning, it should be a beginning, not an end” (Martin, 1996, 

p. 10).  

 Through the use of Multiple Intelligences in the mathematics classroom students are 

able to discover the unique ways in which they approach learning because they begin to discov-

er the intellectual capacities that they rely on in formulating ways in which to problem solve 

and therefore approach mathematics learning.  Munro states that, “Helping student to under-
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stand and to value the uniqueness of their own approaches to learning is empowering; it gives 

them a base or starting point from which they can develop further” (Munro, 1994, p. 12).    

 Thomas Armstrong offered an example of how we can use the Multiple Intelligences 

within the instructional procedure. The goal was to teach students the role that x plays in an 

equation.  Teaching through the intelligences could take the form of one, two, or more of these 

approaches to teach the same concept: 

 Linguistic: “Students are provided with a verbal description of x” 

 Logical Mathematical: “Students are given and equation and shown how to solve for x” 

 Spatial:  “Students are told that x is like a masked outlaw that needs to be unmasked; 

 student draw their own version of x” 

 Interpersonal/Bodily Kinesthetic: “Students act out an algebraic equation, where a 

 student wearing a mask plays x, and the other students represent numbers or functions.”  

 In subsequent steps, one student moves the equation students around to get x by itself. 

 Bodily Kinesthetic: “students perform algebraic equations using manipulatives” or 

 “students rhythmically repeat… lyrics several times” to learn a concept 

 Intrapersonal: “students are asked, ‘what are the mysteries—or x’s—in your own life?’ 

 discuss how students ‘solve for x’ in dealing with personal issues” (Armstrong, 1994, p 

176-177). 

 Another approach is offered by Hope Martin.  Martin follows with activities that are ap-

proached through Multiple Intelligences.  For instance, she created an activity called Is this 

Game Fair? in which students must determine whether a game with a given rule is fair or not 

for both players.  Outcomes and expected values are given.  Students work to determine if the 

game is fair using knowledge from class, and using the following intelligences: logical/

mathematical, interpersonal (students are working in pairs), intrapersonal, visual/spatial, and 

bodily/kinesthetic (students are rolling a pair of dice) (Martin, 1996, pg. 205-206).  

 With regard to assessment, mathematics educators must evaluate the utility of multiple 

choice testing. The majority of tests have very little relevance to real-world application of math-

ematical principles. They also deny students the opportunity to express their understanding of 

mathematics using their unique perspectives and intellectual approaches. The use of authentic 

assessments including projects, presentations, game-based approaches, written analyses, portfo-

lios, and more might be better leveraged to more fully identify students’ mathematical achieve-

ment.  

  Through the use of Multiple Intelligences as a way to approach teaching mathematics, 

more classrooms can become better suited to helping students develop skills for problem-

solving and thinking mathematically through the use of intelligences they have.  

Conclusion 

 With test scores showing little to no improvement on national and international levels, 

mathematics education cannot remain as is.  Changes to both instructional design and assess-

ment expectations must be realized to reengage students in mathematics and promote mathe-

matical achievement.  Through the theory of Multiple Intelligences, educators are able to tap 

into students’ intellectual abilities to view problem solving as a multifaceted sphere and go be-

yond the logical/mathematical approach to teaching and learning.  Teachers can embrace an in-

structional approach based in MI that brings new life and the real world of problem solving to 

the classroom.   

 


